Distribution of sediment concentration in debris flow using Rényi entropy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.01.081
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kumbhakar, Manotosh & Ghoshal, Koeli & Singh, Vijay P., 2017. "Derivation of Rouse equation for sediment concentration using Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 494-499.
- Singh, Vijay P. & Cui, Huijuan, 2015. "Modeling sediment concentration in debris flow by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 49-58.
- Kumbhakar, Manotosh & Ghoshal, Koeli, 2016. "Two dimensional velocity distribution in open channels using Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 546-559.
- Kundu, Snehasis, 2017. "Derivation of Hunt equation for suspension distribution using Shannon entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 96-111.
- Kazemian-Kale-Kale, Amin & Bonakdari, Hossein & Gholami, Azadeh & Khozani, Zohreh Sheikh & Akhtari, Ali Akbar & Gharabaghi, Bahram, 2018. "Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 558-576.
- Khozani, Zohreh Sheikh & Bonakdari, Hossein, 2018. "Formulating the shear stress distribution in circular open channels based on the Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 114-126.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kazemian-Kale-Kale, Amin & Bonakdari, Hossein & Gholami, Azadeh & Khozani, Zohreh Sheikh & Akhtari, Ali Akbar & Gharabaghi, Bahram, 2018. "Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 558-576.
- Kundu, Snehasis, 2017. "Derivation of Hunt equation for suspension distribution using Shannon entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 96-111.
- Mohan, Shiv & Tsai, Christina W., 2024. "Derivation of vertical concentration profile for nonuniform sediment in suspension using Shannon entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Babak Lashkar-Ara & Niloofar Kalantari & Zohreh Sheikh Khozani & Amir Mosavi, 2021. "Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel," Mathematics, MDPI, vol. 9(6), pages 1-15, March.
- Khozani, Zohreh Sheikh & Bonakdari, Hossein, 2018. "Formulating the shear stress distribution in circular open channels based on the Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 114-126.
- Wang, Yumin & Zhu, Guangcan, 2021. "Evaluation of water quality reliability based on entropy in water distribution system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
- Kumbhakar, Manotosh & Ghoshal, Koeli & Singh, Vijay P., 2017. "Derivation of Rouse equation for sediment concentration using Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 494-499.
- Kumbhakar, Manotosh & Tsai, Christina W., 2023. "Analytical modeling of vertical distribution of streamwise velocity in open channels using fractional entropy," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Zhang, Gengxi & Su, Xiaoling & Singh, Vijay P., 2020. "Modelling groundwater-dependent vegetation index using Entropy theory," Ecological Modelling, Elsevier, vol. 416(C).
- Domenica Mirauda & Marco Ostoich, 2020. "MIMR Criterion Application: Entropy Approach to Select the Optimal Quality Parameter Set Responsible for River Pollution," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
- Eck, Daniel J. & McKeague, Ian W., 2016. "Central Limit Theorems under additive deformations," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 156-162.
More about this item
Keywords
Rényi entropy; Probability distribution; Lagrange multipliers; Sediment concentration; Debris flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:267-281. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.