IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp114-126.html
   My bibliography  Save this article

Formulating the shear stress distribution in circular open channels based on the Renyi entropy

Author

Listed:
  • Khozani, Zohreh Sheikh
  • Bonakdari, Hossein

Abstract

The principle of maximum entropy is employed to derive the shear stress distribution by maximizing the Renyi entropy subject to some constraints and by assuming that dimensionless shear stress is a random variable. A Renyi entropy-based equation can be used to model the shear stress distribution along the entire wetted perimeter of circular channels and circular channels with flat beds and deposited sediments. A wide range of experimental results for 12 hydraulic conditions with different Froude numbers (0.375 to 1.71) and flow depths (20.3 to 201.5 mm) were used to validate the derived shear stress distribution. For circular channels, model performance enhanced with increasing flow depth (mean relative error (RE) of 0.0414) and only deteriorated slightly at the greatest flow depth (RE of 0.0573). For circular channels with flat beds, the Renyi entropy model predicted the shear stress distribution well at lower sediment depth. The Renyi entropy model results were also compared with Shannon entropy model results. Both models performed well for circular channels, but for circular channels with flat beds the Renyi entropy model displayed superior performance in estimating the shear stress distribution. The Renyi entropy model was highly precise and predicted the shear stress distribution in a circular channel with RE of 0.0480 and in a circular channel with a flat bed with RE of 0.0488.

Suggested Citation

  • Khozani, Zohreh Sheikh & Bonakdari, Hossein, 2018. "Formulating the shear stress distribution in circular open channels based on the Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 114-126.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:114-126
    DOI: 10.1016/j.physa.2017.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307471
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumbhakar, Manotosh & Ghoshal, Koeli, 2016. "Two dimensional velocity distribution in open channels using Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 546-559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babak Lashkar-Ara & Niloofar Kalantari & Zohreh Sheikh Khozani & Amir Mosavi, 2021. "Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel," Mathematics, MDPI, vol. 9(6), pages 1-15, March.
    2. Kazemian-Kale-Kale, Amin & Bonakdari, Hossein & Gholami, Azadeh & Khozani, Zohreh Sheikh & Akhtari, Ali Akbar & Gharabaghi, Bahram, 2018. "Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 558-576.
    3. Ghoshal, Koeli & Kumbhakar, Manotosh & Singh, Vijay P., 2019. "Distribution of sediment concentration in debris flow using Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 267-281.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumbhakar, Manotosh & Ghoshal, Koeli & Singh, Vijay P., 2017. "Derivation of Rouse equation for sediment concentration using Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 494-499.
    2. Kundu, Snehasis, 2017. "Derivation of Hunt equation for suspension distribution using Shannon entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 96-111.
    3. Ghoshal, Koeli & Kumbhakar, Manotosh & Singh, Vijay P., 2019. "Distribution of sediment concentration in debris flow using Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 267-281.
    4. Kumbhakar, Manotosh & Tsai, Christina W., 2023. "Analytical modeling of vertical distribution of streamwise velocity in open channels using fractional entropy," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Kazemian-Kale-Kale, Amin & Bonakdari, Hossein & Gholami, Azadeh & Khozani, Zohreh Sheikh & Akhtari, Ali Akbar & Gharabaghi, Bahram, 2018. "Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 558-576.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:114-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.