IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v584y2021ics0378437121006464.html
   My bibliography  Save this article

Evaluation of water quality reliability based on entropy in water distribution system

Author

Listed:
  • Wang, Yumin
  • Zhu, Guangcan

Abstract

In this paper, water quality redundancy/reliability was proposed based on information entropy technology including Tsalli entropy and Shannon entropy in water distribution system (WDS), which was applied to 26 WDS with various layouts. The residual chlorine is considered to be representative of water quality parameter, comply with first-order decay model. The method was performed based on EPANET toolkit and MATLAB environment. The results indicated that approach 1 focused on local nodal water quality is more suitable for evaluating water quality reliability, especially for small WDS. The water quality redundancy increased with the loop number for various layouts, and has an exponential relationship with distance-weighted average nodal degree. The water quality redundancy has a linear relationship with the hydraulic redundancy. In addition, the water quality reliability based on Tsalli entropy and Shannon entropy decreased with the value of decay coefficient, which indicated that the water quality redundancy/reliability can be applied to evaluate and compare the reliability of WDS from view of water quality. The proposed evaluation method based on information entropy can help design, analyze, and improve the scenarios in WDS.

Suggested Citation

  • Wang, Yumin & Zhu, Guangcan, 2021. "Evaluation of water quality reliability based on entropy in water distribution system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
  • Handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006464
    DOI: 10.1016/j.physa.2021.126373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006464
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazemian-Kale-Kale, Amin & Bonakdari, Hossein & Gholami, Azadeh & Khozani, Zohreh Sheikh & Akhtari, Ali Akbar & Gharabaghi, Bahram, 2018. "Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 558-576.
    2. Singh, Vijay P. & Oh, Juik, 2015. "A Tsallis entropy-based redundancy measure for water distribution networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 360-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Dong & Jiyao Yin & Jirubin Xiang & Zhangyu Chang & Tiantian Gu & Feihu Han, 2023. "EWM-FCE-ODM-Based Evaluation of Smart Community Construction: From the Perspective of Residents’ Sense of Gain," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Luigi-Ionut Catana & Vasile Preda, 2022. "A New Stochastic Order of Multivariate Distributions: Application in the Study of Reliability of Bridges Affected by Earthquakes," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    3. Li, Chuchu & Lin, Qin & Huang, Dong & Grifoll, Manel & Yang, Dong & Feng, Hongxiang, 2023. "Is entropy an indicator of port traffic predictability? The evidence from Chinese ports," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiku T. Tanyimboh, 2017. "Informational Entropy: a Failure Tolerance and Reliability Surrogate for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3189-3204, August.
    2. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    3. Zarghami, Seyed Ashkan & Gunawan, Indra & Schultmann, Frank, 2018. "Integrating entropy theory and cospanning tree technique for redundancy analysis of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 102-112.
    4. Ghoshal, Koeli & Kumbhakar, Manotosh & Singh, Vijay P., 2019. "Distribution of sediment concentration in debris flow using Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 267-281.
    5. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    6. Liu, Wei & Song, Zhaoyang & Ouyang, Min & Li, Jie, 2020. "Recovery-based seismic resilience enhancement strategies of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    8. Tiku T. Tanyimboh & Calvin Siew & Salah Saleh & Anna Czajkowska, 2016. "Comparison of Surrogate Measures for the Reliability and Redundancy of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3535-3552, August.
    9. Tiku T. Tanyimboh & Anna Czajkowska, 2018. "Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective Evolutionary Design Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3337-3352, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.