IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp693-706.html
   My bibliography  Save this article

Alternating between consensus and leader selection reveals community structure in networks

Author

Listed:
  • Yang, Bo
  • Li, Xu
  • Liu, Xiangwei
  • He, He
  • Chen, Wei

Abstract

In this paper, we propose two novel algorithms to detect community structure in networks based on consensus dynamics. The first algorithm identifies the communities in networks by alternating between recognizing leader nodes following the analysis of influence coefficients of nodes, and finding the nodes belonging to the groups of their corresponding leader nodes using consensus dynamics and the difference coefficients of nodes. The second algorithm is an extension to the first one via the leader-following models. After confirming the leader nodes according to the first algorithm, we reveal the memberships of nodes belonging to the corresponding leaders by performing consensus dynamics. In the second algorithm, an approach to calculating the memberships of nodes is proposed. The corresponding leader nodes of communities can be confirmed naturally and the status of nodes in networks can be determined quantitatively. Finally, our algorithms are applied to real-world and computer generated networks whose community structures are well known. The experiment results show the effectiveness and reliability of the proposed algorithms.

Suggested Citation

  • Yang, Bo & Li, Xu & Liu, Xiangwei & He, He & Chen, Wei, 2019. "Alternating between consensus and leader selection reveals community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 693-706.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:693-706
    DOI: 10.1016/j.physa.2018.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313414
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capocci, A. & Servedio, V.D.P. & Caldarelli, G. & Colaiori, F., 2005. "Detecting communities in large networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 669-676.
    2. Yang, Bo & He, He & Hu, Xiaoming, 2017. "Detecting community structure in networks via consensus dynamics and spatial transformation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 156-170.
    3. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    4. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    5. Michelle Girvan & M. E. J. Newman, 2001. "Community Structure in Social and Biological Networks," Working Papers 01-12-077, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    2. Lou, Hao & Li, Shenghong & Zhao, Yuxin, 2013. "Detecting community structure using label propagation with weighted coherent neighborhood propinquity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3095-3105.
    3. Tselykh, Alexander & Vasilev, Vladislav & Tselykh, Larisa, 2019. "Clustering method based on the elastic energy functional of directed signed weighted graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 392-407.
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    6. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    7. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    8. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    9. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    10. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.
    12. Fuqiang Zhao & Lichao Zhang & Guijun Yang & Li He & Fengyu Yan, 2017. "Application Of Cut Algorithm Based On Algebraic Connectivity To Community Detection," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-18, February.
    13. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    14. Giorgio Gronchi & Marco Raglianti & Fabio Giovannelli, 2021. "Network Theory and Switching Behaviors: A User Guide for Analyzing Electronic Records Databases," Future Internet, MDPI, vol. 13(9), pages 1-12, August.
    15. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    16. Shen Wang & Jun Wu & Yutao Zhang, 2018. "Consumer preference–enabled intelligent energy management for smart cities using game theoretic social tie," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    17. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    18. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    19. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    20. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:693-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.