IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7717-7731d42560.html
   My bibliography  Save this article

Point Estimate Method for Voltage Unbalance Evaluation in Residential Distribution Networks with High Penetration of Small Wind Turbines

Author

Listed:
  • Chao Long

    (School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK)

  • Mohamed Emad A. Farrag

    (School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK)

  • Donald M. Hepburn

    (School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK)

  • Chengke Zhou

    (School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK)

Abstract

Voltage unbalance (VU) in residential distribution networks (RDNs) is mainly caused by load unbalance in three phases, resulting from network configuration and load-variations. The increasing penetration of distributed generation devices, such as small wind turbines (SWTs), and their uneven distribution over the three phases have introduced difficulties in evaluating possible VU. This paper aims to provide a three-phase probabilistic power flow method, point estimate method to evaluate the VU. This method, considering the randomness of load switching in customers’ homes and time-variation in wind speed, is shown to be capable of providing a global picture of a network’s VU degree so that it can be used for fast evaluation. Applying the 2 m + 1 scheme of the proposed method to a generic UK distribution network shows that a balanced SWT penetration over three phases reduces the VU of a RDN. Greater unbalance in SWT penetration results in higher voltage unbalance factor (VUF), and cause VUF in excess of the UK statutory limit of 1.3%.

Suggested Citation

  • Chao Long & Mohamed Emad A. Farrag & Donald M. Hepburn & Chengke Zhou, 2014. "Point Estimate Method for Voltage Unbalance Evaluation in Residential Distribution Networks with High Penetration of Small Wind Turbines," Energies, MDPI, vol. 7(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7717-7731:d:42560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuexia Zhang & Zhiqi Guo & Weirong Chen, 2017. "Probabilistic Power Flow Method Considering Continuous and Discrete Variables," Energies, MDPI, vol. 10(5), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamau, J.N. & Kinyua, R. & Gathua, J.K., 2010. "6 years of wind data for Marsabit, Kenya average over 14m/s at 100m hub height; An analysis of the wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1298-1302.
    2. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    3. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    4. Santiago Pindado & Carlos Pindado & Javier Cubas, 2017. "Fréchet Distribution Applied to Salary Incomes in Spain from 1999 to 2014. An Engineering Approach to Changes in Salaries’ Distribution," Economies, MDPI, vol. 5(2), pages 1-19, May.
    5. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    6. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    7. Alonzo, Bastien & Ringkjob, Hans-Kristian & Jourdier, Benedicte & Drobinski, Philippe & Plougonven, Riwal & Tankov, Peter, 2017. "Modelling the variability of the wind energy resource on monthly and seasonal timescales," Renewable Energy, Elsevier, vol. 113(C), pages 1434-1446.
    8. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    9. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    10. Ammari, H.D. & Al-Maaitah, A., 2003. "Assessment of wind-generation potentiality in Jordan using the site effectiveness approach," Energy, Elsevier, vol. 28(15), pages 1579-1592.
    11. Wais, Piotr, 2017. "Two and three-parameter Weibull distribution in available wind power analysis," Renewable Energy, Elsevier, vol. 103(C), pages 15-29.
    12. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    13. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    14. Santos, E.C.O. & Guedes, E.F. & Zebende, G.F. & da Silva Filho, A.M., 2022. "Autocorrelation of wind speed: A sliding window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Basir Khan, M. Reyasudin & Jidin, Razali & Pasupuleti, Jagadeesh & Shaaya, Sharifah Azwa, 2015. "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea," Energy, Elsevier, vol. 82(C), pages 80-97.
    16. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    17. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    18. Kabir, Asif & Lemongo-Tchamba, Ivan & Fernandez, Arturo, 2015. "An assessment of available ocean current hydrokinetic energy near the North Carolina shore," Renewable Energy, Elsevier, vol. 80(C), pages 301-307.
    19. Macleod, Alasdair, 2008. "Using the microclimate to optimise renewable energy installations," Renewable Energy, Elsevier, vol. 33(8), pages 1804-1813.
    20. Ahmed Shata, A.S. & Hanitsch, R., 2008. "Electricity generation and wind potential assessment at Hurghada, Egypt," Renewable Energy, Elsevier, vol. 33(1), pages 141-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7717-7731:d:42560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.