IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp945-954.html
   My bibliography  Save this article

Algorithm for multiplex network generation with shared links

Author

Listed:
  • Zhou, Yinzuo
  • Zhou, Jie

Abstract

Multiplex networks have been used to describe multilevel system by the way of combining several layers of sub-networks with one layer representing one sub-level system. Many multiplexes are characterized by a significant shared links in different layers. For this new network framework, research efforts have been paid on the study of its topological and dynamical properties. However, in these studies the network structures are mostly simple or specific, and the shared links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. To systemically study multiplex network, a general multiplex network framework is necessary. In this work, we introduce an algorithm to generate a multiplex networks with shared links whose degree correlation functions of all its layers, the nodal degree correlation function between the layers, and the size of the resulting network are all tunable. Moreover, we give an upper bound of the average degree of the resulting network when the degree correlation functions introduced above are given and make efforts to maximize the average nodal degree of the multiplex networks. This algorithm may serve as a good candidate of standard technique for multiplex network generation.

Suggested Citation

  • Zhou, Yinzuo & Zhou, Jie, 2018. "Algorithm for multiplex network generation with shared links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 945-954.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:945-954
    DOI: 10.1016/j.physa.2018.06.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118308264
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jianmei & Wang, Wenjie & Chen, Guanrong, 2009. "A two-level complex network model and its application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2435-2449.
    2. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    3. J. Donges & H. Schultz & N. Marwan & Y. Zou & J. Kurths, 2011. "Investigating the topology of interacting networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 635-651, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei & Qu, Shuai & Jiang, Manrui & Jiang, Cheng, 2021. "The construction of multilayer stock network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Zhou, Yinzuo, 2019. "A modified algorithm of multiplex networks generation based on overlapped links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 435-442.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiromitsu Goto & Wataru Souma & Mari Jibu & Yuichi Ikeda, 2020. "Multilayer Network Analysis of the Drug Pipeline in the Global Pharmaceutical Industry," Papers 2003.04620, arXiv.org.
    2. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    3. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    4. Julian Maluck & Reik V Donner, 2015. "A Network of Networks Perspective on Global Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    5. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    6. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    7. Heloisa Ruivo & Gilvan Sampaio & Fernando M. Ramos, 2014. "Knowledge extraction from large climatological data sets using a genome-wide analysis approach: application to the 2005 and 2010 Amazon droughts," Climatic Change, Springer, vol. 124(1), pages 347-361, May.
    8. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    9. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    10. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    11. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    12. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    13. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.
    14. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    15. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    16. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    17. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    18. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Krawiecki, A., 2018. "Spin glass transition in a simple variant of the Ising model on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 773-790.
    20. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:945-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.