IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp196-209.html
   My bibliography  Save this article

The wider, the better? The interaction between the IoT diffusion and online retailers’ decisions

Author

Listed:
  • Hu, Sen
  • Hu, Bin
  • Cao, Ya

Abstract

Diffusion process is a hot topic in various subjects. However, much existing literature ignores the dynamic influence of the environment on the diffusion process and the impact of the diffusion process on the environment. Taking the IoT diffusion process in the e-commerce industry as example, we investigate the dynamic interaction between the IoT diffusion process and the external environment, i.e., the adjustment of retail prices and the profit of an online retailer through a simulation model. The simulation model combines the price adjustment mechanism and the diffusion evolution mechanism. We obtain two main conclusions. First, price adjustment of retailers blocks the IoT diffusion process, and a higher online shopping disutility level could amplify the impediment influence of price adjustment. Second, the IoT diffusion is of influence on the pricing and profit of the online retailers. The influence type (i.e., positive or neglect, monotonous or non-monotonous) depends on the special circumstance. Under some conditions, a wider diffusion does not inevitably result in a larger profit of the online retailer. This shows us that a wider or faster diffusion is not always better.

Suggested Citation

  • Hu, Sen & Hu, Bin & Cao, Ya, 2018. "The wider, the better? The interaction between the IoT diffusion and online retailers’ decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 196-209.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:196-209
    DOI: 10.1016/j.physa.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307350
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ming & Liu, Run-Ran & Peng, Dan & Jia, Chun-Xiao & Wang, Bing-Hong, 2018. "Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1239-1246.
    2. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    3. Suo, Qi & Guo, Jin-Li & Shen, Ai-Zhong, 2018. "Information spreading dynamics in hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 475-487.
    4. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    5. Weon Sang Yoo & Eunkyu Lee, 2011. "Internet Channel Entry: A Strategic Analysis of Mixed Channel Structures," Marketing Science, INFORMS, vol. 30(1), pages 29-41, 01-02.
    6. Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. Banerjee, Abhijit & Jackson, Matthew O. & Duflo, Esther & Chandrasekhar, Arun G., 2012. "The Diffusion of Microfinance," CEPR Discussion Papers 8770, C.E.P.R. Discussion Papers.
    9. Dan Horsky, 1990. "A Diffusion Model Incorporating Product Benefits, Price, Income and Information," Marketing Science, INFORMS, vol. 9(4), pages 342-365.
    10. Rabik Ar Chatterjee & Jehoshua Eliashberg, 1990. "The Innovation Diffusion Process in a Heterogeneous Population: A Micromodeling Approach," Management Science, INFORMS, vol. 36(9), pages 1057-1079, September.
    11. Eunkyu Lee & Richard Staelin & Weon Sang Yoo & Rex Du, 2013. "A “Meta-Analysis” of Multibrand, Multioutlet Channel Systems," Management Science, INFORMS, vol. 59(9), pages 1950-1969, September.
    12. Krafft, Manfred & Goetz, Oliver & Mantrala, Murali & Sotgiu, Francesca & Tillmanns, Sebastian, 2015. "The Evolution of Marketing Channel Research Domains and Methodologies: An Integrative Review and Future Directions," Journal of Retailing, Elsevier, vol. 91(4), pages 569-585.
    13. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    14. Ádám Novotny & Lóránt Dávid & Hajnalka Csáfor, 2015. "Applying RFID technology in the retail industry – benefits and concerns from the consumer’s perspective," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 17(39), pages 615-615, May.
    15. Agha Mohammad Ali Kermani, Mehrdad & Fatemi Ardestani, Seyed Farshad & Aliahmadi, Alireza & Barzinpour, Farnaz, 2017. "A novel game theoretic approach for modeling competitive information diffusion in social networks with heterogeneous nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 570-582.
    16. Jiang, Guoyin & Tadikamalla, Pandu R. & Shang, Jennifer & Zhao, Ling, 2016. "Impacts of knowledge on online brand success: an agent-based model for online market share enhancement," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1093-1103.
    17. Gao, Lei & Li, Ruiqi & Shu, Panpan & Wang, Wei & Gao, Hui & Cai, Shimin, 2018. "Effects of individual popularity on information spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 32-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roe, Michael & Spanaki, Konstantina & Ioannou, Athina & Zamani, Efpraxia D. & Giannakis, Mihalis, 2022. "Drivers and challenges of internet of things diffusion in smart stores: A field exploration," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    2. Sittiporn Pimsakul & Premaratne Samaranayake & Tritos Laosirihongthong, 2021. "Prioritizing Enabling Factors of IoT Adoption for Sustainability in Supply Chain Management," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    3. Payam Hanafizadeh & Ferdos Hatami Lankarani & Shahrokh Nikou, 2022. "Perspectives on management theory’s application in the internet of things research," Information Systems and e-Business Management, Springer, vol. 20(4), pages 749-787, December.
    4. Liu, Jiawei & Ding, Jie, 2020. "Requesting for retweeting or donating? A research on how the fundraiser seeks help in the social charitable crowdfunding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiawei & Ding, Jie, 2020. "Requesting for retweeting or donating? A research on how the fundraiser seeks help in the social charitable crowdfunding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Brett R. Gordon, 2009. "A Dynamic Model of Consumer Replacement Cycles in the PC Processor Industry," Marketing Science, INFORMS, vol. 28(5), pages 846-867, 09-10.
    3. Kim, Namwoon & Srivastava, Rajendra K. & Han, Jin K., 2001. "Consumer decision-making in a multi-generational choice set context," Journal of Business Research, Elsevier, vol. 53(3), pages 123-136, September.
    4. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 29-36, February.
    5. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    6. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    7. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    8. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    9. Chaab, Jafar & Salhab, Rabih & Zaccour, Georges, 2022. "Dynamic pricing and advertising in the presence of strategic consumers and social contagion: A mean-field game approach," Omega, Elsevier, vol. 109(C).
    10. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.
    11. Velickovic, Stevan & Radojicic, Valentina & Bakmaz, Bojan, 2016. "The effect of service rollout on demand forecasting: The application of modified Bass model to the step growing markets," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 130-140.
    12. Yanqing Han & Zongming Zhang, 2018. "Impact of free sampling on product diffusion based on Bass model," Electronic Commerce Research, Springer, vol. 18(1), pages 125-141, March.
    13. Eslami, Hossein & Krishnan, Trichy, 2023. "New sustainable product adoption: The role of economic and social factors," Energy Policy, Elsevier, vol. 183(C).
    14. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    15. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2019. "Modeling Technological Substitution by Incorporating Dynamic Adoption Rate," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-24, February.
    16. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    17. Jacob Goldenberg & Oded Lowengart & Daniel Shapira, 2009. "Zooming In: Self-Emergence of Movements in New Product Growth," Marketing Science, INFORMS, vol. 28(2), pages 274-292, 03-04.
    18. Zhiling Guo & Jianqing Chen, 2018. "Multigeneration Product Diffusion in the Presence of Strategic Consumers," Information Systems Research, INFORMS, vol. 29(1), pages 206-224, March.
    19. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    20. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:196-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.