IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp101-111.html
   My bibliography  Save this article

A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay

Author

Listed:
  • Li, Jing
  • Kang, Xinyue
  • Shi, Xingyun
  • Song, Yufei

Abstract

In this paper, a linearized numerical scheme of nonlinear variable-order fractional diffusion equation with time delay is constructed. We apply the L2−1σ formula to discretize the temporal derivative and second-order central difference scheme to discretize the spatial derivative. The proposed method is unconditionally stable and convergent with Oτ2+h2, where τ and h are the time and space steps, respectively. Numerical experiment demonstrates the effectiveness and accuracy of the numerical scheme.

Suggested Citation

  • Li, Jing & Kang, Xinyue & Shi, Xingyun & Song, Yufei, 2024. "A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 101-111.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:101-111
    DOI: 10.1016/j.matcom.2023.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Yu & Viktor Vegh & Fawang Liu & Ian Turner, 2015. "A Variable Order Fractional Differential-Based Texture Enhancement Algorithm with Application in Medical Imaging," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-35, July.
    2. Nandal, Sarita & Narain Pandey, Dwijendra, 2020. "Numerical solution of non-linear fourth order fractional sub-diffusion wave equation with time delay," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heydari, M.H. & Razzaghi, M. & Rouzegar, J., 2022. "Chebyshev cardinal polynomials for delay distributed-order fractional fourth-order sub-diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Huang, Lan-Lan & Baleanu, Dumitru & Mo, Zhi-Wen & Wu, Guo-Cheng, 2018. "Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 166-175.
    4. Sarita Nandal & Mahmoud A. Zaky & Rob H. De Staelen & Ahmed S. Hendy, 2021. "Numerical Simulation for a Multidimensional Fourth-Order Nonlinear Fractional Subdiffusion Model with Time Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:101-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.