IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v500y2018icp259-264.html
   My bibliography  Save this article

The behavioral implications of the bilateral gamma process

Author

Listed:
  • Xie, Haibin
  • Wang, Shouyang
  • Lu, Zudi

Abstract

Bilateral gamma process is widely used in risk management and asset pricing. However the behavioral implications of this process remain unknown. This paper investigates this problem for the first time within the framework of Tauchen and Pitts (1983). With the assumption that there are two types of traders in the market, the optimistic and the pessimistic, we find the bilateral gamma process can be derived from Walrasian equilibrium. This finding establishes the microstructure foundations for the bilateral gamma process.

Suggested Citation

  • Xie, Haibin & Wang, Shouyang & Lu, Zudi, 2018. "The behavioral implications of the bilateral gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 259-264.
  • Handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:259-264
    DOI: 10.1016/j.physa.2018.02.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302267
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Küchler, Uwe & Tappe, Stefan, 2008. "Bilateral gamma distributions and processes in financial mathematics," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 261-283, February.
    2. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    3. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    4. Küchler, Uwe & Tappe, Stefan, 2008. "On the shapes of bilateral Gamma densities," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2478-2484, October.
    5. Thomas J. Sargent, 2008. "Evolution and Intelligent Design," American Economic Review, American Economic Association, vol. 98(1), pages 5-37, March.
    6. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    7. Fabio Bellini & Lorenzo Mercuri, 2014. "Option pricing in a conditional Bilateral Gamma model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(2), pages 373-390, June.
    8. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    9. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    10. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    2. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    3. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    4. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    7. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.
    8. M A Sánchez-Granero & J E Trinidad-Segovia & J Clara-Rahola & A M Puertas & F J De las Nieves, 2017. "A model for foreign exchange markets based on glassy Brownian systems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    9. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    11. Lorenzo Mercuri & Fabio Bellini, 2014. "Option Pricing in a Dynamic Variance-Gamma Model," Papers 1405.7342, arXiv.org.
    12. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2016. "Intraday volatility interaction between the crude oil and equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 1-13.
    13. Tomy, Lishamol & Jose, K.K., 2009. "Generalized normal-Laplace AR process," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1615-1620, July.
    14. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    15. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    16. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    17. Petar Jevtic & Patrizia Semeraro, 2014. "A class of multivariate marked Poisson processes to model asset returns," Carlo Alberto Notebooks 351, Collegio Carlo Alberto.
    18. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    19. Junting Liu & Qi Wang & Yuanyuan Zhang, 2024. "VIX option pricing through nonaffine GARCH dynamics and semianalytical formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1189-1223, July.
    20. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:259-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.