IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v473y2017icp501-510.html
   My bibliography  Save this article

An energy-like indicator to assess opinion resilience

Author

Listed:
  • Mathias, Jean-Denis
  • Huet, Sylvie
  • Deffuant, Guillaume

Abstract

Using the bounded-confidence model, with fixed uncertainties and extremists, we investigate how resilient the moderate mean opinion of a population is to the arrival in it of a new group of agents, when the energy of the opinion of this group (extremeness × group size) is varied. We say moderate mean opinion is resilient when, even though it may become temporarily more extreme after the arrival of the new agents, it later recovers its moderate value. We show that such resilience is displayed up to a threshold value of the equivalent energy of the group. We also show that when the agent-based model spontaneously converges to a single extreme, then this energy threshold is nil.

Suggested Citation

  • Mathias, Jean-Denis & Huet, Sylvie & Deffuant, Guillaume, 2017. "An energy-like indicator to assess opinion resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 501-510.
  • Handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:501-510
    DOI: 10.1016/j.physa.2016.12.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310135
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    3. Rainer Hegselmann & Stefan König & Sascha Kurz & Christoph Niemann & Jörg Rambau, 2015. "Optimal Opinion Control: The Campaign Problem," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(3), pages 1-18.
    4. Jean-Denis Mathias & Sylvie Huet & Guillaume Deffuant, 2016. "Bounded Confidence Model with Fixed Uncertainties and Extremists: The Opinions Can Keep Fluctuating Indefinitely," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-6.
    5. Tianjun Fu & Ahmed Abbasi & Hsinchun Chen, 2010. "A focused crawler for Dark Web forums," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(6), pages 1213-1231, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    2. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    3. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    4. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    5. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    6. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    7. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    8. Gary Mckeown & Noel Sheehy, 2006. "Mass Media and Polarisation Processes in the Bounded Confidence Model of Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-11.
    9. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    10. Hoferer, Moritz & Böttcher, Lucas & Herrmann, Hans J. & Gersbach, Hans, 2020. "The impact of technologies in political campaigns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    13. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    14. Bruce Edmonds, 2020. "Co-developing beliefs and social influence networks—towards understanding socio-cognitive processes like Brexit," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 491-515, April.
    15. Juliette Rouchier & Emily Tanimura, 2012. "When overconfident agents slow down collective learning," Post-Print hal-00623966, HAL.
    16. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.
    17. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    18. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    19. Biondo, A.E. & Pluchino, A. & Rapisarda, A., 2018. "Modeling surveys effects in political competitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 714-726.
    20. Zhu, Hou & Hu, Bin, 2018. "Impact of information on public opinion reversal—An agent based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 578-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:501-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.