IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v473y2017icp213-224.html
   My bibliography  Save this article

An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents

Author

Listed:
  • Rangel-Huerta, A.
  • Ballinas-Hernández, A.L.
  • Muñoz-Meléndez, A.

Abstract

An entropy model to characterize the heterogeneity of a pedestrian crowd in a counter-flow corridor is presented. Pedestrians are modeled as self-propelled autonomous agents that are able to perform maneuvers to avoid collisions based on a set of simple rules of perception and action. An observer can determine a probability distribution function of the displayed behavior of pedestrians based only on external information. Three types of pedestrian are modeled, relaxed, standard and hurried pedestrians depending on their preferences of turn and non-turn when walking. Thus, using these types of pedestrians two crowds can be simulated: homogeneous and heterogeneous crowds.

Suggested Citation

  • Rangel-Huerta, A. & Ballinas-Hernández, A.L. & Muñoz-Meléndez, A., 2017. "An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 213-224.
  • Handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:213-224
    DOI: 10.1016/j.physa.2016.12.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310779
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    2. Zhao, Ying & Yuan, Mengqi & Su, Guofeng & Chen, Tao, 2015. "Crowd macro state detection using entropy model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 84-93.
    3. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    4. Ana Luisa Ballinas-Hernández & Angélica Muñoz-Meléndez & Alejandro Rangel-Huerta, 2011. "Multiagent System Applied to the Modeling and Simulation of Pedestrian Traffic in Counterflow," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-2.
    5. Rangel-Huerta, A. & Muñoz-Meléndez, A., 2010. "Kinetic theory of situated agents applied to pedestrian flow in a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1077-1089.
    6. Weng, W.G. & Shen, S.F. & Yuan, H.Y. & Fan, W.C., 2007. "A behavior-based model for pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 668-678.
    7. Parisi, Daniel R. & Gilman, Marcelo & Moldovan, Herman, 2009. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3600-3608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    2. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    3. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    4. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    5. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    6. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    7. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    8. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen, 2016. "Modeling, simulation and analysis of group trampling risks during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 970-984.
    10. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    11. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    12. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    13. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2015. "Simulation and analysis of congestion risk during escalator transfers using a modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 28-40.
    14. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    15. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2014. "Simulation and analysis of individual trampling risk during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 119-133.
    16. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. Ana Luisa Ballinas-Hernández & Angélica Muñoz-Meléndez & Alejandro Rangel-Huerta, 2011. "Multiagent System Applied to the Modeling and Simulation of Pedestrian Traffic in Counterflow," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-2.
    18. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    19. Goldsztein, Guillermo H., 2017. "Crowd of individuals walking in opposite directions. A toy model to study the segregation of the group into lanes of individuals moving in the same direction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 162-173.
    20. Jin, Cheng-Jie & Jiang, Rui & Wei, Wei & Li, Dawei & Guo, Ning, 2018. "Microscopic events under high-density condition in uni-directional pedestrian flow experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 237-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:213-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.