IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp912-929.html
   My bibliography  Save this article

Multiple commodities in statistical microeconomics: Model and market

Author

Listed:
  • Baaquie, Belal E.
  • Yu, Miao
  • Du, Xin

Abstract

A statistical generalization of microeconomics has been made in Baaquie (2013). In Baaquie et al. (2015), the market behavior of single commodities was analyzed and it was shown that market data provides strong support for the statistical microeconomic description of commodity prices. The case of multiple commodities is studied and a parsimonious generalization of the single commodity model is made for the multiple commodities case. Market data shows that the generalization can accurately model the simultaneous correlation functions of up to four commodities. To accurately model five or more commodities, further terms have to be included in the model. This study shows that the statistical microeconomics approach is a comprehensive and complete formulation of microeconomics, and which is independent to the mainstream formulation of microeconomics.

Suggested Citation

  • Baaquie, Belal E. & Yu, Miao & Du, Xin, 2016. "Multiple commodities in statistical microeconomics: Model and market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 912-929.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:912-929
    DOI: 10.1016/j.physa.2016.06.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116303776
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khrennikov, Andrei, 2008. "Quantum-like microeconomics: Statistical model of distribution of investments and production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5826-5843.
    2. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    3. Baaquie, Belal E., 2013. "Statistical microeconomics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4400-4416.
    4. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    5. Baaquie, Belal E. & Du, Xin & Tanputraman, Winson, 2015. "Empirical microeconomics action functionals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 19-37.
    6. Cole, Harold L. & Obstfeld, Maurice, 1991. "Commodity trade and international risk sharing : How much do financial markets matter?," Journal of Monetary Economics, Elsevier, vol. 28(1), pages 3-24, August.
    7. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baaquie, Belal Ehsan, 2018. "Bonds with index-linked stochastic coupons in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 148-169.
    2. Baaquie, Belal Ehsan, 2019. "A statistical model of the firm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 392-411.
    3. Feng, Ling & Wang, Jieyu, 2023. "Random sources correlations and carbon futures pricing," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Wang & Liang Zhao & Ning Zhang & Liu Feng & Haibo Lin, 2022. "Stability of China's Stock Market: Measure and Forecast by Ricci Curvature on Network," Papers 2204.06692, arXiv.org.
    2. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Hirdesh K. Pharasi & Kiran Sharma & Anirban Chakraborti & Thomas H. Seligman, 2018. "Complex market dynamics in the light of random matrix theory," Papers 1809.07100, arXiv.org, revised Sep 2018.
    4. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    5. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    6. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    7. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    8. Pafka, Szilárd & Kondor, Imre, 2001. "Evaluating the RiskMetrics methodology in measuring volatility and Value-at-Risk in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 305-310.
    9. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    10. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    11. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    12. D. S. Grebenkov & J. Serror, 2013. "Following a Trend with an Exponential Moving Average: Analytical Results for a Gaussian Model," Papers 1308.5658, arXiv.org.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    14. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    15. Chen, Huan & Mai, Yong & Li, Sai-Ping, 2014. "Analysis of network clustering behavior of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 360-367.
    16. Denis S. Grebenkov & Jeremy Serror, 2014. "Optimal Allocation of Trend Following Strategies," Papers 1410.8409, arXiv.org.
    17. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    18. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    19. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    20. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:912-929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.