IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp684-704.html
   My bibliography  Save this article

Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching

Author

Listed:
  • Greenhalgh, D.
  • Liang, Y.
  • Mao, X.

Abstract

We discuss the effect of introducing telegraph noise, which is an example of an environmental noise, into the susceptible–infectious–recovered–susceptible (SIRS) model by examining the model using a finite-state Markov Chain (MC). First we start with a two-state MC and show that there exists a unique nonnegative solution and establish the conditions for extinction and persistence. We then explain how the results can be generalised to a finite-state MC. The results for the SIR (Susceptible–Infectious–Removed) model with Markovian Switching (MS) are a special case. Numerical simulations are produced to confirm our theoretical results.

Suggested Citation

  • Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 684-704.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:684-704
    DOI: 10.1016/j.physa.2016.06.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116304009
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vargas-De-León, Cruz, 2011. "On the global stability of SIS, SIR and SIRS epidemic models with standard incidence," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1106-1110.
    2. Lu, Qiuying, 2009. "Stability of SIRS system with random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3677-3686.
    3. Tornatore, Elisabetta & Maria Buccellato, Stefania & Vetro, Pasquale, 2005. "Stability of a stochastic SIR system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 111-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    3. Wei, Wei & Xu, Wei & Song, Yi & Liu, Jiankang, 2021. "Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Zu, Li & Jiang, Daqing & O’Regan, Donal & Hayat, Tasawar & Ahmad, Bashir, 2018. "Ergodic property of a Lotka–Volterra predator–prey model with white noise higher order perturbation under regime switching," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 93-102.
    5. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    6. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.
    7. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2024. "A novel SIRS epidemic model for two diseases incorporating treatment functions, media coverage, and three types of noise," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Liu, Liya & Jiang, Daqing & Hayat, Tasawar, 2021. "Dynamics of an SIR epidemic model with varying population sizes and regime switching in a two patch setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Guo, Xiaoxia & Luo, Jiaowan, 2018. "Stationary distribution and extinction of SIR model with nonlinear incident rate under Markovian switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 471-481.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    2. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    3. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    4. El Fatini, Mohamed & El Khalifi, Mohamed & Gerlach, Richard & Laaribi, Aziz & Taki, Regragui, 2019. "Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Caraballo, Tomás & Fatini, Mohamed El & Khalifi, Mohamed El & Gerlach, Richard & Pettersson, Roger, 2020. "Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    7. Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "SDE SIS epidemic model with demographic stochasticity and varying population size," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 218-238.
    8. Serrano, Daniel Hernández & Villarroel, Javier & Hernández-Serrano, Juan & Tocino, Ángel, 2023. "Stochastic simplicial contagion model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Li, Shuang & Xiong, Jie, 2024. "SIR epidemic model with non-Lipschitz stochastic perturbations," Statistics & Probability Letters, Elsevier, vol. 210(C).
    11. Gupta, R.P. & Kumar, Arun, 2022. "Endemic bubble and multiple cusps generated by saturated treatment of an SIR model through Hopf and Bogdanov–Takens bifurcations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 1-21.
    12. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    13. William Brock & Anastasios Xepapadeas, 2020. "The Economy, Climate Change and Infectious Diseases: Links and Policy Implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 811-824, August.
    14. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.
    15. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    16. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    18. Guo, Yingjia, 2017. "Stochastic regime switching SIR model driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 1-11.
    19. Zhao, Dianli & Zhang, Tiansi & Yuan, Sanling, 2016. "The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 372-379.
    20. Acedo, L. & González-Parra, Gilberto & Arenas, Abraham J., 2010. "Modal series solution for an epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1151-1157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:684-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.