IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.06664.html
   My bibliography  Save this paper

Systemic risk in multiplex networks with asymmetric coupling and threshold feedback

Author

Listed:
  • Rebekka Burkholz
  • Matt V. Leduc
  • Antonios Garas
  • Frank Schweitzer

Abstract

We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the coupling strength between the layers. Based on an analytical branching process approximation, we calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results are compared with the case of a single layer network that is an aggregated representation of the two layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk is increased because of the mutual amplification of cascades in the two layers. We even observe sharp phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can be applied to a scenario where firms decide whether they want to split their business into a less risky core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of systemic risk, which is underestimated in an aggregated approach.

Suggested Citation

  • Rebekka Burkholz & Matt V. Leduc & Antonios Garas & Frank Schweitzer, 2015. "Systemic risk in multiplex networks with asymmetric coupling and threshold feedback," Papers 1506.06664, arXiv.org.
  • Handle: RePEc:arx:papers:1506.06664
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.06664
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    2. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    3. Claudio J. Tessone & Antonios Garas & Beniamino Guerra & Frank Schweitzer, "undated". "How big is too big? Critical Shocks for Systemic Failure Cascades," Working Papers ETH-RC-12-015, ETH Zurich, Chair of Systems Design.
    4. Smith, Keith V & Schreiner, John C, 1969. "A Portfolio Analysis of Conglomerate Diversification," Journal of Finance, American Finance Association, vol. 24(3), pages 413-427, June.
    5. Vojislav Maksimovic & Gordon Phillips, 2002. "Do Conglomerate Firms Allocate Resources Inefficiently Across Industries? Theory and Evidence," Journal of Finance, American Finance Association, vol. 57(2), pages 721-767, April.
    6. Levy, Haim & Sarnat, Marshall, 1970. "Diversification, Portfolio Analysis and the Uneasy Case for Conglomerate Mergers," Journal of Finance, American Finance Association, vol. 25(4), pages 795-802, September.
    7. Yakov Amihud & Baruch Lev, 1981. "Risk Reduction as a Managerial Motive for Conglomerate Mergers," Bell Journal of Economics, The RAND Corporation, vol. 12(2), pages 605-617, Autumn.
    8. Lewellen, Wilbur G, 1971. "A Pure Financial Rationale for the Conglomerate Merger," Journal of Finance, American Finance Association, vol. 26(2), pages 521-537, May.
    9. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    10. Paolo Tasca & Stefano Battiston, "undated". "Diversification and Financial Stability," Working Papers CCSS-11-001, ETH Zurich, Chair of Systems Design.
    11. Montagna, Mattia & Kok, Christoffer, 2013. "Multi-layered interbank model for assessing systemic risk," Kiel Working Papers 1873, Kiel Institute for the World Economy (IfW Kiel).
    12. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    13. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    14. Arinaminpathy, Nimalan & Kapadia, Sujit & May, Robert, 2012. "Size and complexity in model financial systems," Bank of England working papers 465, Bank of England.
    15. Battiston, Stefano & Gatti, Domenico Delli & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Default cascades: When does risk diversification increase stability?," Journal of Financial Stability, Elsevier, vol. 8(3), pages 138-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matt V. Leduc & Sebastian Poledna & Stefan Thurner, 2016. "Systemic Risk Management in Financial Networks with Credit Default Swaps," Papers 1601.02156, arXiv.org, revised Oct 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fariba Karimi & Matthias Raddant, 2016. "Cascades in Real Interbank Markets," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 49-66, January.
    2. Covi, Giovanni & Gorpe, Mehmet Ziya & Kok, Christoffer, 2021. "CoMap: Mapping Contagion in the Euro Area Banking Sector," Journal of Financial Stability, Elsevier, vol. 53(C).
    3. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    4. V. Sasidevan & Nils Bertschinger, 2019. "Systemic Risk: Fire-Walling Financial Systems Using Network-Based Approaches," Papers 1912.05273, arXiv.org.
    5. León, C. & Berndsen, R.J. & Renneboog, L.D.R., 2014. "Financial Stability and Interacting Networks of Financial Institutions and Market Infrastructures," Other publications TiSEM 0de9add3-0338-4575-9c00-b, Tilburg University, School of Economics and Management.
    6. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    7. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    8. Giulio Bottazzi & Alessandro De Sanctis & Fabio Vanni, 2016. "Non-performing loans, systemic risk and resilience in financial networks," LEM Papers Series 2016/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Rebekka Burkholz & Hans J. Herrmann & Frank Schweitzer, 2018. "Explicit size distributions of failure cascades redefine systemic risk on finite networks," Papers 1802.03286, arXiv.org.
    10. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    11. Alessandro Ferracci & Giulio Cimini, 2021. "Systemic risk in interbank networks: disentangling balance sheets and network effects," Papers 2109.14360, arXiv.org, revised Sep 2022.
    12. Alvarez, Fernando & Barlevy, Gadi, 2021. "Mandatory disclosure and financial contagion," Journal of Economic Theory, Elsevier, vol. 194(C).
    13. Langfield, Sam & Liu, Zijun & Ota, Tomohiro, 2014. "Mapping the UK interbank system," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 288-303.
    14. Hitoshi Hayakawa, 2020. "Liquidity in Financial Networks," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 253-301, January.
    15. Berndsen, Ron J. & León, Carlos & Renneboog, Luc, 2018. "Financial stability in networks of financial institutions and market infrastructures," Journal of Financial Stability, Elsevier, vol. 35(C), pages 120-135.
    16. Sergio R. Stancato de Souza, 2014. "Capital Requirements, Liquidity and Financial Stability: the case of Brazil," Working Papers Series 375, Central Bank of Brazil, Research Department.
    17. Souza, Sergio R.S. & Tabak, Benjamin M. & Silva, Thiago C. & Guerra, Solange M., 2015. "Insolvency and contagion in the Brazilian interbank market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 140-151.
    18. João Barata Ribeiro Blanco Barroso & Thiago Christiano Silva & Sergio Rubens Stancato de Souza, 2016. "Decomposition of Systemic Risk Drivers in Evolving Financial Networks," Working Papers Series 448, Central Bank of Brazil, Research Department.
    19. Carlos León & Ron J. Berndsen, 2013. "Modular scale-free architecture of Colombian financial networks: Evidence and challenges with financial stability in view," Borradores de Economia 11104, Banco de la Republica.
    20. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.06664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.