IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp590-604.html
   My bibliography  Save this article

Temporal correlations in the Vicsek model with vectorial noise

Author

Listed:
  • Gulich, Damián
  • Baglietto, Gabriel
  • Rozenfeld, Alejandro F.

Abstract

We study the temporal correlations in the evolution of the order parameter ϕt for the Vicsek model with vectorial noise by estimating its Hurst exponent H with detrended fluctuation analysis (DFA). We present results on this parameter as a function of noise amplitude η introduced in simulations. We also compare with well known order–disorder phase transition for that same noise range. We find that – regardless of detrending degree – H spikes at the known coexistence noise for phase transition, and that this is due to nonstationarities introduced by the transit of the system between two well defined states with lower exponents. We statistically support this claim by successfully synthesizing equivalent cases derived from a transformed fractional Brownian motion (TfBm).

Suggested Citation

  • Gulich, Damián & Baglietto, Gabriel & Rozenfeld, Alejandro F., 2018. "Temporal correlations in the Vicsek model with vectorial noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 590-604.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:590-604
    DOI: 10.1016/j.physa.2018.02.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301808
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longfeng Zhao & Wei Li & Chunbin Yang & Jihui Han & Zhu Su & Yijiang Zou, 2017. "Multifractality and Network Analysis of Phase Transition," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    2. Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
    3. Solé, Ricard V. & Valverde, Sergi, 2001. "Information transfer and phase transitions in a model of internet traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 595-605.
    4. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    5. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    6. V. Manías & J. Candia & E. V. Albano, 2005. "Corner wetting in a far-from-equilibrium magnetic growth model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 47(4), pages 563-570, October.
    7. Ludescher, Josef & Bogachev, Mikhail I. & Kantelhardt, Jan W. & Schumann, Aicko Y. & Bunde, Armin, 2011. "On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2480-2490.
    8. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    9. Grech, Dariusz & Pamuła, Grzegorz, 2008. "The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4299-4308.
    10. Grech, Dariusz & Mazur, Zygmunt, 2013. "On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2384-2397.
    11. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    12. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    2. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 351-366.
    3. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    4. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    5. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    6. Rybski, Diego & Bunde, Armin, 2009. "On the detection of trends in long-term correlated records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1687-1695.
    7. Leonarduzzi, R. & Wendt, H. & Abry, P. & Jaffard, S. & Melot, C. & Roux, S.G. & Torres, M.E., 2016. "p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 319-339.
    8. Hongli Niu & Jun Wang, 2014. "Phase and multifractality analyses of random price time series by finite-range interacting biased voter system," Computational Statistics, Springer, vol. 29(5), pages 1045-1063, October.
    9. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    10. Martin Magris & Jiyeong Kim & Esa Rasanen & Juho Kanniainen, 2017. "Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis," Papers 1711.03534, arXiv.org.
    11. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    12. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    13. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    14. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    15. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    16. Klaudia Kozlowska & Miroslaw Latka & Bruce J West, 2020. "Significance of trends in gait dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-25, October.
    17. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    18. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    19. Nurbanu Bursa & Hüseyin Tatlýdil, 2015. "Investigation of Credit Default Swaps using Detrended Fluctuation Analysis which is an Econophysical Technique," Eurasian Eononometrics, Statistics and Emprical Economics Journal, Eurasian Academy Of Sciences, vol. 2(2), pages 25-33, October.
    20. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:590-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.