IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v459y2016icp24-31.html
   My bibliography  Save this article

Combining fuzzy logic and eigenvector centrality measure in social network analysis

Author

Listed:
  • Parand, Fereshteh-Azadi
  • Rahimi, Hossein
  • Gorzin, Mohsen

Abstract

The rapid growth of social networks use has made a great platform to present different services, increasing beneficiary of services and business profit. Therefore considering different levels of member activities in these networks, finding highly active members who can have the influence on the choice and the role of other members of the community is one the most important and challenging issues in recent years. These nodes that usually have a high number of relations with a lot of quality interactions are called influential nodes. There are various types of methods and measures presented to find these nodes. Among all the measures, centrality is the one that identifies various types of influential nodes in a network. Here we define four different factors which affect the strength of a relationship. A fuzzy inference system calculates the strength of each relation, creates a crisp matrix in which the corresponding elements identify the strength of each relation, and using this matrix eigenvector measure calculates the most influential node. Applying our suggested method resulted in choosing a more realistic central node with consideration of the strength of all friendships.

Suggested Citation

  • Parand, Fereshteh-Azadi & Rahimi, Hossein & Gorzin, Mohsen, 2016. "Combining fuzzy logic and eigenvector centrality measure in social network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 24-31.
  • Handle: RePEc:eee:phsmap:v:459:y:2016:i:c:p:24-31
    DOI: 10.1016/j.physa.2016.03.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300772
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    2. Liu, Jia-Bao & Zheng, Ya-Qian & Lee, Chien-Chiang, 2024. "Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory," Applied Energy, Elsevier, vol. 357(C).
    3. Mingwei Wang & Decui Liang & Wen Cao & Yuanyuan Fu, 2024. "Physician recommendation via online and offline social network group decision making with cross-network uncertain trust propagation," Annals of Operations Research, Springer, vol. 341(1), pages 583-619, October.
    4. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    5. Mbatha, Vusisizwe Moses & Alovokpinhou, Sedjro Aaron, 2022. "The structure of the South African stock market network during COVID-19 hard lockdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    6. Kim, Jongwoo & Kim, Hongil & Geum, Youngjung, 2023. "How to succeed in the market? Predicting startup success using a machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    8. Pradhan, Priodyuti & C.U., Angeliya & Jalan, Sarika, 2020. "Principal eigenvector localization and centrality in networks: Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    2. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    3. Salavati, Chiman & Abdollahpouri, Alireza & Manbari, Zhaleh, 2018. "BridgeRank: A novel fast centrality measure based on local structure of the network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 635-653.
    4. Maihami, Vafa & Yaghmaee, Farzin, 2018. "Automatic image annotation using community detection in neighbor images," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 123-132.
    5. Xiaoli Zhang & Qing Wang & Binglong Zhao & Jiafu Su, 2024. "Exploring the Vulnerability of Supply Chain Networks from the Perspective of Network Collaborative Relationships," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 11041-11062, September.
    6. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    7. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    8. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    9. Jia, Jianlin & Chen, Yanyan & Wang, Yang & Li, Tongfei & Li, Yongxing, 2021. "A new global method for identifying urban rail transit key station during COVID-19: A case study of Beijing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. Zhu, Hui & Wu, Heng & Cao, Jin & Fu, Gang & Li, Hui, 2018. "Information dissemination model for social media with constant updates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 469-482.
    11. Wang, Xiaojie & Su, Yanyuan & Zhao, Chengli & Yi, Dongyun, 2016. "Effective identification of multiple influential spreaders by DegreePunishment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 238-247.
    12. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:459:y:2016:i:c:p:24-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.