IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102646.html
   My bibliography  Save this article

The Metabolism and Growth of Web Forums

Author

Listed:
  • Lingfei Wu
  • Jiang Zhang
  • Min Zhao

Abstract

We view web forums as virtual living organisms feeding on user's clicks and investigate how they grow at the expense of clickstreams. We find that (the number of page views in a given time period) and (the number of unique visitors in the time period) of the studied forums satisfy the law of the allometric growth, i.e., . We construct clickstream networks and explain the observed temporal dynamics of networks by the interactions between nodes. We describe the transportation of clickstreams using the function , in which is the total amount of clickstreams passing through node and is the amount of the clickstreams dissipated from to the environment. It turns out that , an indicator for the efficiency of network dissipation, not only negatively correlates with , but also sets the bounds for . In particular, when and when . Our findings have practical consequences. For example, can be used as a measure of the “stickiness” of forums, which quantifies the stable ability of forums to remain users “lock-in” on the forum. Meanwhile, the correlation between and provides a method to predict the long-term “stickiness” of forums from the clickstream data in a short time period. Finally, we discuss a random walk model that replicates both of the allometric growth and the dissipation function .

Suggested Citation

  • Lingfei Wu & Jiang Zhang & Min Zhao, 2014. "The Metabolism and Growth of Web Forums," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0102646
    DOI: 10.1371/journal.pone.0102646
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102646
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102646&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.