IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp448-457.html
   My bibliography  Save this article

Opinion dynamics: Kinetic modelling with mass media, application to the Scottish independence referendum

Author

Listed:
  • Boudin, Laurent
  • Salvarani, Francesco

Abstract

We consider a kinetic model describing some mechanisms of opinion formation in the framework of referendums, where the individuals, who can interact between themselves and modify their opinion by means of spontaneous self-thinking, are moreover under the influence of mass media. We study, at the numerical level, both the transient and the asymptotic regimes. In particular, we point out that a plurality of media, with different orientations, is a key ingredient to allow pluralism and prevent consensus. The forecasts of the model are compared to some surveys related to the Scottish independence referendum of 2014.

Suggested Citation

  • Boudin, Laurent & Salvarani, Francesco, 2016. "Opinion dynamics: Kinetic modelling with mass media, application to the Scottish independence referendum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 448-457.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:448-457
    DOI: 10.1016/j.physa.2015.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008602
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Helbing, Dirk, 1993. "Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 196(4), pages 546-573.
    3. Ben-Naim, E & Krapivsky, P.L & Vazquez, F & Redner, S, 2003. "Unity and discord in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 99-106.
    4. Boudin, Laurent & Mercier, Aurore & Salvarani, Francesco, 2012. "Conciliatory and contradictory dynamics in opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5672-5684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boudin, Laurent & Mercier, Aurore & Salvarani, Francesco, 2012. "Conciliatory and contradictory dynamics in opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5672-5684.
    2. Hendrickx, Julien M., 2008. "Order preservation in a generalized version of Krause’s opinion dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5255-5262.
    3. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    4. Diemo Urbig & Jan Lorenz & Heiko Herzberg, 2008. "Opinion Dynamics: the Effect of the Number of Peers Met at Once," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-4.
    5. Liang, Haili & Yang, Yiping & Wang, Xiaofan, 2013. "Opinion dynamics in networks with heterogeneous confidence and influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2248-2256.
    6. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    7. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    8. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    9. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    10. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    11. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    12. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    13. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    14. Saggau, Volker, 2012. "Viele Köche Verderben Den Brei – Agentenbasierte Simulationen Zum Föderalismusdurcheinander Während Der Ehec-Krise," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 133052, German Association of Agricultural Economists (GEWISOLA).
    15. Hannah Ãœbler & Stephan Hartmann, 2016. "Simulating Trends in Artificial Influence Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-2.
    16. Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.
    17. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    18. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    20. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:448-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.