IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i2p398-409.html
   My bibliography  Save this article

Characteristics of real futures trading networks

Author

Listed:
  • Wang, Junjie
  • Zhou, Shuigeng
  • Guan, Jihong

Abstract

Futures trading is the core of futures business, and it is considered as one of the typical complex systems. To investigate the complexity of futures trading, we employ the analytical method of complex networks. First, we use real trading records from the Shanghai Futures Exchange to construct futures trading networks, in which nodes are trading participants, and two nodes have a common edge if the two corresponding investors appear simultaneously in at least one trading record as a purchaser and a seller, respectively. Then, we conduct a comprehensive statistical analysis on the constructed futures trading networks. Empirical results show that the futures trading networks exhibit features such as scale-free behavior with interesting odd–even-degree divergence in low-degree regions, small-world effect, hierarchical organization, power-law betweenness distribution, disassortative mixing, and shrinkage of both the average path length and the diameter as network size increases. To the best of our knowledge, this is the first work that uses real data to study futures trading networks, and we argue that the research results can shed light on the nature of real futures business.

Suggested Citation

  • Wang, Junjie & Zhou, Shuigeng & Guan, Jihong, 2011. "Characteristics of real futures trading networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 398-409.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:2:p:398-409
    DOI: 10.1016/j.physa.2010.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110008265
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. S. C. Wang & J. J. Tseng & C. C. Tai & K. H. Lai & W. S. Wu & S. H. Chen & S. P. Li, 2008. "Network topology of an experimental futures exchange," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 105-111, March.
    4. Garlaschelli, Diego & Battiston, Stefano & Castri, Maurizio & Servedio, Vito D.P. & Caldarelli, Guido, 2005. "The scale-free topology of market investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 491-499.
    5. Su, B.B. & Chang, H. & Chen, Y.-Z. & He, D.R., 2007. "A game theory model of urban public traffic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 291-297.
    6. Fu, Feng & Liu, Lianghuan & Wang, Long, 2008. "Empirical analysis of online social networks in the age of Web 2.0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 675-684.
    7. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    8. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    9. S. M.G. Caldeira & T. C. Petit Lobão & R. F.S. Andrade & A. Neme & J. G.V. Miranda, 2006. "The network of concepts in written texts," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 523-529, February.
    10. Han, Ding-Ding & Qian, Jiang-Hai & Liu, Jin-Gao, 2009. "Network topology and correlation features affiliated with European airline companies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(1), pages 71-81.
    11. Liu, Jian-Guo & Xuan, Zhao-Guo & Dang, Yan-Zhong & Guo, Qiang & Wang, Zhong-Tuo, 2007. "Weighted network properties of Chinese nature science basic research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 302-314.
    12. Raj Kumar Pan & Sitabhra Sinha, 2007. "Collective behavior of stock price movements in an emerging market," Papers 0704.0773, arXiv.org, revised Nov 2007.
    13. Zhou, Shuigeng & Hu, Guobiao & Zhang, Zhongzhi & Guan, Jihong, 2008. "An empirical study of Chinese language networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 3039-3047.
    14. Bernardo A. Huberman & Lada A. Adamic, 1999. "Growth dynamics of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 131-131, September.
    15. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    16. Liu, Jianguo & Dang, Yanzhong & Wang, Zhongtuo, 2006. "Complex network properties of Chinese natural science basic research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 578-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Rui-Qi & Li, Ming-Xia & Chen, Wei & Zhou, Wei-Xing & Stanley, H. Eugene, 2019. "Structural properties of statistically validated empirical information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 747-756.
    2. Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
    3. Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi & Zhang, Yuqing, 2017. "Detecting anomalous traders using multi-slice network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 1-9.
    4. Zhao, Zheng & Zhang, YongJie & Feng, Xu & Zhang, Wei, 2014. "An analysis of herding behavior in security analysts’ networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 116-124.
    5. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    6. Zhi-Qiang Jiang & Wen-Jie Xie & Xiong Xiong & Wei Zhang & Yong-Jie Zhang & W. -X. Zhou, 2012. "Trading networks, abnormal motifs and stock manipulation," Papers 1301.0007, arXiv.org.
    7. Sun, Xiao-Qian & Cheng, Xue-Qi & Shen, Hua-Wei & Wang, Zhao-Yang, 2011. "Distinguishing manipulated stocks via trading network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3427-3434.
    8. Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
    9. Ludvig Bohlin & Martin Rosvall, 2014. "Stock Portfolio Structure of Individual Investors Infers Future Trading Behavior," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    10. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    11. Xiao-Qian Sun & Xue-Qi Cheng & Hua-Wei Shen & Zhao-Yang Wang, 2011. "Distinguishing manipulated stocks via trading network analysis," Papers 1110.2260, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjie Wang & Shuigeng Zhou & Jihong Guan, 2010. "Characteristics of Real Futures Trading Networks," Papers 1004.4402, arXiv.org, revised Feb 2011.
    2. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    3. Yang, Chunxia & Chen, Yanhua & Niu, Lei & Li, Qian, 2014. "Cointegration analysis and influence rank—A network approach to global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 168-185.
    4. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    5. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    6. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    7. Fatih Cavdur & Soundar Kumara, 2014. "Network mining: Applications to business data," Information Systems Frontiers, Springer, vol. 16(3), pages 473-490, July.
    8. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Zhu, Jia & Wei, Daijun, 2021. "Analysis of stock market based on visibility graph and structure entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).
    10. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    11. Fatih Cavdur & Soundar Kumara, 2014. "A network view of business systems," Information Systems Frontiers, Springer, vol. 16(1), pages 153-162, March.
    12. Laurie A. Schintler & Aura Reggiani & Rajendra Kulkarni & Peter Nijkamp, 2003. "Scale-Free Phenomena in Communication Networks: A Cross-Atlantic Comparison," ERSA conference papers ersa03p436, European Regional Science Association.
    13. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    14. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    15. Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi & Zhang, Yuqing, 2017. "Detecting anomalous traders using multi-slice network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 1-9.
    16. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    17. Zhu, Hailin & Luo, Hong & Peng, Haipeng & Li, Lixiang & Luo, Qun, 2009. "Complex networks-based energy-efficient evolution model for wireless sensor networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1828-1835.
    18. Polovnikov, Kirill & Kazakov, Vlad & Syntulsky, Sergey, 2020. "Core–periphery organization of the cryptocurrency market inferred by the modularity operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2016. "Investigating the Influence Relationship Models for Stocks in Indian Equity Market: A Weighted Network Modelling Study," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-33, November.
    20. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:2:p:398-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.