IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp188-193.html
   My bibliography  Save this article

Hypoallometric scaling in international collaborations

Author

Listed:
  • Hsiehchen, David
  • Espinoza, Magdalena
  • Hsieh, Antony

Abstract

Collaboration is a vital process and dominant theme in knowledge production, although the effectiveness of policies directed at promoting multinational research remains ambiguous. We examined approximately 24 million research articles published over four decades and demonstrated that the scaling of international publications to research productivity for each country obeys a universal and conserved sublinear power law. Inefficient mechanisms in transborder team dynamics or organization as well as increasing opportunity costs may contribute to the disproportionate growth of international collaboration rates with increasing productivity among nations. Given the constrained growth of international relationships, our findings advocate a greater emphasis on the qualitative aspects of collaborations, such as with whom partnerships are forged, particularly when assessing research and policy outcomes.

Suggested Citation

  • Hsiehchen, David & Espinoza, Magdalena & Hsieh, Antony, 2016. "Hypoallometric scaling in international collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 188-193.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:188-193
    DOI: 10.1016/j.physa.2015.09.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008213
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leydesdorff, Loet & Wagner, Caroline S., 2008. "International collaboration in science and the formation of a core group," Journal of Informetrics, Elsevier, vol. 2(4), pages 317-325.
    2. Luís M A Bettencourt & José Lobo & Deborah Strumsky & Geoffrey B West, 2010. "Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    3. Tom Kolokotrones & Van Savage & Eric J. Deeds & Walter Fontana, 2010. "Curvature in metabolic scaling," Nature, Nature, vol. 464(7289), pages 753-756, April.
    4. Morescalchi, Andrea & Pammolli, Fabio & Penner, Orion & Petersen, Alexander M. & Riccaboni, Massimo, 2015. "The evolution of networks of innovators within and across borders: Evidence from patent data," Research Policy, Elsevier, vol. 44(3), pages 651-668.
    5. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    6. Wagner, Caroline S. & Leydesdorff, Loet, 2005. "Network structure, self-organization, and the growth of international collaboration in science," Research Policy, Elsevier, vol. 34(10), pages 1608-1618, December.
    7. Brian J. Enquist & Andrew P. Allen & James H. Brown & James F. Gillooly & Andrew J. Kerkhoff & Karl J. Niklas & Charles A. Price & Geoffrey B. West, 2007. "Does the exception prove the rule?," Nature, Nature, vol. 445(7127), pages 9-10, February.
    8. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "A general model for the structure and allometry of plant vascular systems," Nature, Nature, vol. 400(6745), pages 664-667, August.
    9. Vasiliki Plerou & Luís A. Nunes Amaral & Parameswaran Gopikrishnan & Martin Meyer & H. Eugene Stanley, 1999. "Similarities between the growth dynamics of university research and of competitive economic activities," Nature, Nature, vol. 400(6743), pages 433-437, July.
    10. Jonathan Adams, 2013. "The fourth age of research," Nature, Nature, vol. 497(7451), pages 557-560, May.
    11. Jonathan Adams, 2012. "The rise of research networks," Nature, Nature, vol. 490(7420), pages 335-336, October.
    12. Wei Pan & Gourab Ghoshal & Coco Krumme & Manuel Cebrian & Alex Pentland, 2013. "Urban characteristics attributable to density-driven tie formation," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Hsiehchen & Magdalena Espinoza & Antony Hsieh, 2018. "Evolution of collaboration and optimization of impact: self-organization in multinational research," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 391-407, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svein Kyvik & Ingvild Reymert, 2017. "Research collaboration in groups and networks: differences across academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 951-967, November.
    2. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    3. Lili Wang & Xianwen Wang & Niels J. Philipsen, 2017. "Network structure of scientific collaborations between China and the EU member states," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 765-781, November.
    4. Young-Sun Jang & Young Joo Ko, 2019. "How latecomers catch up to leaders in high-energy physics as Big Science: transition from national system to international collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 437-480, April.
    5. Tokmachev, Andrey M., 2023. "Regular collective dynamics of research collaboration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Stanislav Avdeev, 2021. "International collaboration in higher education research: A gravity model approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5569-5588, July.
    7. Candelaria Barrios & Esther Flores & M. Ángeles Martínez & Marta Ruiz-Martínez, 2019. "Is there convergence in international research collaboration? An exploration at the country level in the basic and applied science fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 631-659, August.
    8. Jonathan Adams & Karen Gurney & Daniel Hook & Loet Leydesdorff, 2014. "International collaboration clusters in Africa," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 547-556, January.
    9. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.
    10. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.
    11. Jyoti Dua & Hiran H. Lathabai & Vivek Kumar Singh, 2023. "Measuring and characterizing research collaboration in SAARC countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1265-1294, February.
    12. Eli Rudinow Saetnan & Richard Philip Kipling, 2016. "Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1057-1074, November.
    13. David Hsiehchen & Magdalena Espinoza & Antony Hsieh, 2018. "Evolution of collaboration and optimization of impact: self-organization in multinational research," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 391-407, October.
    14. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    15. Jorge Nogueira de Paiva Britto & Leonardo Costa Ribeiro & Eduardo da Motta e Albuquerque, 2021. "Global systems of innovation: introductory notes on a new layer and a new hierarchy in innovation systems," Innovation and Development, Taylor & Francis Journals, vol. 11(2-3), pages 259-279, September.
    16. Jyoti Dua & Vivek Kumar Singh & Hiran H. Lathabai, 2023. "Measuring and characterizing international collaboration patterns in Indian scientific research," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5081-5116, September.
    17. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).
    18. Sujit Bhattacharya & Shilpa & Arshia Kaul, 2015. "Emerging countries assertion in the global publication landscape of science: a case study of India," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 387-411, May.
    19. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    20. Wentian Shi & Wenlong Yang & Debin Du, 2020. "The Scientific Cooperation Network of Chinese Scientists and Its Proximity Mechanism," Sustainability, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:188-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.