IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0064727.html
   My bibliography  Save this article

Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas

Author

Listed:
  • Michail Fragkias
  • José Lobo
  • Deborah Strumsky
  • Karen C Seto

Abstract

Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones.

Suggested Citation

  • Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
  • Handle: RePEc:plo:pone00:0064727
    DOI: 10.1371/journal.pone.0064727
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064727
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0064727&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0064727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Tom Kolokotrones & Van Savage & Eric J. Deeds & Walter Fontana, 2010. "Curvature in metabolic scaling," Nature, Nature, vol. 464(7289), pages 753-756, April.
    4. Beck, Nathaniel & Katz, Jonathan N., 1995. "What To Do (and Not to Do) with Time-Series Cross-Section Data," American Political Science Review, Cambridge University Press, vol. 89(3), pages 634-647, September.
    5. Jones, Donald W., 1991. "How urbanization affects energy-use in developing countries," Energy Policy, Elsevier, vol. 19(7), pages 621-630, September.
    6. Glaeser, Edward L. & Kahn, Matthew E., 2004. "Sprawl and urban growth," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 56, pages 2481-2527, Elsevier.
    7. Rosenthal, Stuart S. & Strange, William C., 2004. "Evidence on the nature and sources of agglomeration economies," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 49, pages 2119-2171, Elsevier.
    8. Diego Puga, 2010. "The Magnitude And Causes Of Agglomeration Economies," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 203-219, February.
    9. Carlino, Gerald A. & Chatterjee, Satyajit & Hunt, Robert M., 2007. "Urban density and the rate of invention," Journal of Urban Economics, Elsevier, vol. 61(3), pages 389-419, May.
    10. Edward L. Glaeser & Matthew G. Resseger, 2010. "The Complementarity Between Cities And Skills," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 221-244, February.
    11. Katz, J. Sylvan, 2006. "Indicators for complex innovation systems," Research Policy, Elsevier, vol. 35(7), pages 893-909, September.
    12. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    13. Matthew Gandy, 2004. "Rethinking urban metabolism: water, space and the modern city," City, Taylor & Francis Journals, vol. 8(3), pages 363-379, December.
    14. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    15. Gabaix, Xavier & Ioannides, Yannis M., 2004. "The evolution of city size distributions," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 53, pages 2341-2378, Elsevier.
    16. Rappaport, Jordan, 2008. "A productivity model of city crowdedness," Journal of Urban Economics, Elsevier, vol. 63(2), pages 715-722, March.
    17. Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    18. James E. Payne, 2010. "Survey of the international evidence on the causal relationship between energy consumption and growth," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(1), pages 53-95, January.
    19. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    20. José Lobo & Luís M A Bettencourt & Deborah Strumsky & Geoffrey B West, 2013. "Urban Scaling and the Production Function for Cities," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    21. J Sylvan Katz & Viv Cothey, 2006. "Web indicators for complex innovation systems," Research Evaluation, Oxford University Press, vol. 15(2), pages 85-95, August.
    22. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    23. Arbesman, Samuel & Christakis, Nicholas A., 2011. "Scaling of prosocial behavior in cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2155-2159.
    24. Luís M A Bettencourt & José Lobo & Deborah Strumsky & Geoffrey B West, 2010. "Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    25. Norman Sedgley & Bruce Elmslie, 2011. "Do We Still Need Cities? Evidence on Rates of Innovation from Count Data Models of Metropolitan Statistical Area Patents," American Journal of Economics and Sociology, Wiley Blackwell, vol. 70(1), pages 86-108, January.
    26. Lobo, José & Strumsky, Deborah, 2008. "Metropolitan patenting, inventor agglomeration and social networks: A tale of two effects," Journal of Urban Economics, Elsevier, vol. 63(3), pages 871-884, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Lobo & D. Strumsky & J. Rothwell, 2013. "Scaling of patenting with urban population size: evidence from global metropolitan areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 819-828, September.
    2. Jaison R. Abel & Ishita Dey & Todd M. Gabe, 2012. "Productivity And The Density Of Human Capital," Journal of Regional Science, Wiley Blackwell, vol. 52(4), pages 562-586, October.
    3. Andres Gomez-Lievano & Oscar Patterson-Lomba, 2018. "Estimating the drivers of urban economic complexity and their connection to economic performance," Papers 1812.02842, arXiv.org, revised Sep 2021.
    4. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    5. Jaison R. Abel & Ishita Dey & Todd M. Gabe, 2012. "Productivity And The Density Of Human Capital," Journal of Regional Science, Wiley Blackwell, vol. 52(4), pages 562-586, October.
    6. Jos� Lobo & Charlotta Mellander & Kevin Stolarick & Deborah Strumsky, 2014. "The Inventive, the Educated and the Creative: How Do They Affect Metropolitan Productivity?," Industry and Innovation, Taylor & Francis Journals, vol. 21(2), pages 155-177, February.
    7. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    8. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    9. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    10. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    11. Faberman, R. Jason & Freedman, Matthew, 2016. "The urban density premium across establishments," Journal of Urban Economics, Elsevier, vol. 93(C), pages 71-84.
    12. Lenzi, Camilla, 2016. "Co-invention networks and inventive productivity in US citiesAuthor-Name: Breschi, Stefano," Journal of Urban Economics, Elsevier, vol. 92(C), pages 66-75.
    13. Ahfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2017. "The compact city in empirical research: A quantitative literature review," LSE Research Online Documents on Economics 83638, London School of Economics and Political Science, LSE Library.
    14. Michail Fragkias & José Lobo & Karen C Seto, 2017. "A comparison of nighttime lights data for urban energy research: Insights from scaling analysis in the US system of cities," Environment and Planning B, , vol. 44(6), pages 1077-1096, November.
    15. Kristian Behrens & Gilles Duranton & Frédéric Robert-Nicoud, 2014. "Productive Cities: Sorting, Selection, and Agglomeration," Journal of Political Economy, University of Chicago Press, vol. 122(3), pages 507-553.
    16. Gabriel M. Ahfeldt & Elisabetta Pietrostefani, 2017. "The Compact City in Empirical Research: A Quantitative Literature Review," SERC Discussion Papers 0215, Centre for Economic Performance, LSE.
    17. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    18. William R. Kerr & Scott Duke Kominers, 2015. "Agglomerative Forces and Cluster Shapes," The Review of Economics and Statistics, MIT Press, vol. 97(4), pages 877-899, October.
    19. Andini, Monica & de Blasio, Guido & Duranton, Gilles & Strange, William C., 2013. "Marshallian labour market pooling: Evidence from Italy," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 1008-1022.
    20. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0064727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.