IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v432y2015icp102-107.html
   My bibliography  Save this article

Global evidence on the distribution of firm growth rates

Author

Listed:
  • Williams, Michael A.
  • Pinto, Brijesh P.
  • Park, David

Abstract

The consensus finding in the literature is that the distribution of firm growth rates is best approximated by the Laplace distribution, a particular case of the Subbotin, or exponential power, family of probability distributions. Using a richer database than prior studies and testing for more theoretical distributions, we find that the distribution of firm growth rates is best approximated by the heavier-tailed Cauchy distribution.

Suggested Citation

  • Williams, Michael A. & Pinto, Brijesh P. & Park, David, 2015. "Global evidence on the distribution of firm growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 102-107.
  • Handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:102-107
    DOI: 10.1016/j.physa.2015.02.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115002393
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giovanni Dosi & Sébastien Lechevalier & Angelo Secchi, 2010. "Interfirm heterogeneity: nature, sources and consequences for industrial dynamics. An introduction," Post-Print hal-00642680, HAL.
    2. Giulio Bottazzi & Alex Coad & Nadia Jacoby & Angelo Secchi, 2011. "Corporate growth and industrial dynamics: evidence from French manufacturing," Applied Economics, Taylor & Francis Journals, vol. 43(1), pages 103-116.
    3. Sergey V. Buldyrev & Jakub Growiec & Fabio Pammolli & Massimo Riccaboni & H. Eugene Stanley, 2007. "The Growth of Business Firms: Facts and Theory," Journal of the European Economic Association, MIT Press, vol. 5(2-3), pages 574-584, 04-05.
    4. Einar Erlingsson & Simone Alfarano & Marco Raberto & Hlynur Stefánsson, 2013. "On the distributional properties of size, profit and growth of Icelandic firms," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 57-74, April.
    5. Dongfeng Fu & Fabio Pammolli & S. V. Buldyrev & Massimo Riccaboni & Kaushik Matia & Kazuko Yamasaki & H. E. Stanley, 2005. "The Growth of Business Firms: Theoretical Framework and Empirical Evidence," Papers physics/0512005, arXiv.org.
    6. Bottazzi, Giulio & Dosi, Giovanni & Lippi, Marco & Pammolli, Fabio & Riccaboni, Massimo, 2001. "Innovation and corporate growth in the evolution of the drug industry," International Journal of Industrial Organization, Elsevier, vol. 19(7), pages 1161-1187, July.
    7. Metzig, Cornelia & Gordon, Mirta B., 2014. "A model for scaling in firms’ size and growth rate distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 264-279.
    8. Alfarano, Simone & Milakovic, Mishael, 2008. "Does classical competition explain the statistical features of firm growth?," Economics Letters, Elsevier, vol. 101(3), pages 272-274, December.
    9. Luís M B Cabral & José Mata, 2003. "On the Evolution of the Firm Size Distribution: Facts and Theory," American Economic Review, American Economic Association, vol. 93(4), pages 1075-1090, September.
    10. Werner Hölzl, 2011. "Persistence, Survival and Growth: A Closer Look at 20 Years of High-Growth Firms in Austria," WIFO Working Papers 403, WIFO.
    11. Giulio Bottazzi & Angelo Secchi, 2003. "Common Properties and Sectoral Specificities in the Dynamics of U.S. Manufacturing Companies," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 23(3_4), pages 217-232, December.
    12. Nunes Amaral, Luís A & Buldyrev, Sergey V & Havlin, Shlomo & Maass, Philipp & Salinger, Michael A & Eugene Stanley, H & Stanley, Michael H.R, 1997. "Scaling behavior in economics: The problem of quantifying company growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 244(1), pages 1-24.
    13. Giulio Bottazzi & Angelo Secchi, 2006. "Explaining the distribution of firm growth rates," RAND Journal of Economics, RAND Corporation, vol. 37(2), pages 235-256, June.
    14. Manas, Arnaud, 2009. "French butchers don't do quantum physics," Economics Letters, Elsevier, vol. 103(2), pages 101-106, May.
    15. Giovanni Dosi & Sébastien Lechevalier & Angelo Secchi, 2010. "Introduction: Interfirm heterogeneity--nature, sources and consequences for industrial dynamics," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(6), pages 1867-1890, December.
    16. Jakub Growiec & Fabio Pammolli & Massimo Riccaboni, 2020. "Innovation and Corporate Dynamics: A Theoretical Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(1), pages 1-45, March.
    17. Palestrini, Antonio, 2007. "Analysis of industrial dynamics: A note on the relationship between firms' size and growth rate," Economics Letters, Elsevier, vol. 94(3), pages 367-371, March.
    18. Cornelia Metzig & Mirta B. Gordon, 2014. "A Model for Scaling in Firms' Size and Growth Rate Distribution," Post-Print hal-00909771, HAL.
    19. Bottazzi, Giulio & Secchi, Angelo, 2003. "Why are distributions of firm growth rates tent-shaped?," Economics Letters, Elsevier, vol. 80(3), pages 415-420, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Tania Treibich, 2019. "Debunking the granular origins of aggregate fluctuations: from real business cycles back to Keynes," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 67-90, March.
    2. Jakub Growiec & Fabio Pammolli & Massimo Riccaboni, 2020. "Innovation and Corporate Dynamics: A Theoretical Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(1), pages 1-45, March.
    3. Vitezić Vanja & Srhoj Stjepan & Perić Marko, 2018. "Investigating Industry Dynamics in a Recessionary Transition Economy," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 43-67, June.
    4. Blind, Georg D. & Lottanti von Mandach, Stefania, 2021. "Private Equity Buyouts in Japan: Effects on Employment Numbers," Journal of the Japanese and International Economies, Elsevier, vol. 59(C).
    5. Giovanni Dosi & Marco Grazzi & Daniele Moschella & Gary Pisano & Federico Tamagni, 2020. "Long-term firm growth: an empirical analysis of US manufacturers 1959–2015," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(2), pages 309-332.
    6. David Vidal-Tomás & Alba Ruiz-Buforn & Omar Blanco-Arroyo & Simone Alfarano, 2022. "A Cross-Sectional Analysis of Growth and Profit Rate Distribution: The Spanish Case," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    7. Oriol Valles Codina, 2020. "Economic Production as Life: A Classical Approach to Computational Social Science," Working Papers 2001, New School for Social Research, Department of Economics.
    8. Williams, Michael A. & Baek, Grace & Park, Leslie Y. & Zhao, Wei, 2016. "Global evidence on the distribution of economic profit rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 356-363.
    9. Williams, Michael A. & Baek, Grace & Li, Yiyang & Park, Leslie Y. & Zhao, Wei, 2017. "Global evidence on the distribution of GDP growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 750-758.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Brenner & Matthias Duschl, 2018. "Modeling Firm and Market Dynamics: A Flexible Model Reproducing Existing Stylized Facts on Firm Growth," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 745-772, October.
    2. Thomas Brenner & Matthias Duschl, 2014. "Modelling Firm and Market Dynamics - A Flexible Model Reproducing Existing Stylized Facts," Working Papers on Innovation and Space 2014-07, Philipps University Marburg, Department of Geography.
    3. David Vidal-Tomás & Alba Ruiz-Buforn & Omar Blanco-Arroyo & Simone Alfarano, 2022. "A Cross-Sectional Analysis of Growth and Profit Rate Distribution: The Spanish Case," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    4. Matthias Duschl & Thomas Brenner, 2011. "Characteristics of Regional Industry-specific Employment Growth – Empirical Evidence for Germany," Working Papers on Innovation and Space 2011-07, Philipps University Marburg, Department of Geography.
    5. Williams, Michael A. & Baek, Grace & Li, Yiyang & Park, Leslie Y. & Zhao, Wei, 2017. "Global evidence on the distribution of GDP growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 750-758.
    6. ARATA Yoshiyuki, 2014. "Firm Growth and Laplace Distribution: The importance of large jumps," Discussion papers 14033, Research Institute of Economy, Trade and Industry (RIETI).
    7. Jakub Growiec & Fabio Pammolli & Massimo Riccaboni, 2020. "Innovation and Corporate Dynamics: A Theoretical Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(1), pages 1-45, March.
    8. Matthias Duschl & Thomas Brenner, 2013. "Characteristics of regional industry-specific employment growth rates' distributions," Papers in Regional Science, Wiley Blackwell, vol. 92(2), pages 249-270, June.
    9. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    10. Vitezić Vanja & Srhoj Stjepan & Perić Marko, 2018. "Investigating Industry Dynamics in a Recessionary Transition Economy," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 43-67, June.
    11. Gregor Semieniuk & Ellis Scharfenaker, 2014. "A Bayesian Latent Variable Mixture Model for Filtering Firm Profit Rate," SCEPA working paper series. 2014-1, Schwartz Center for Economic Policy Analysis (SCEPA), The New School.
    12. Jan Schulz & Daniel M. Mayerhoffer, 2021. "Equal chances, unequal outcomes? Network-based evolutionary learning and the industrial dynamics of superstar firms," Journal of Business Economics, Springer, vol. 91(9), pages 1357-1385, November.
    13. Mundt, Philipp & Alfarano, Simone & Milaković, Mishael, 2020. "Exploiting ergodicity in forecasts of corporate profitability," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    14. Giulio Bottazzi & Taewon Kang & Federico Tamagni, 2023. "Persistence in firm growth: inference from conditional quantile transition matrices," Small Business Economics, Springer, vol. 61(2), pages 745-770, August.
    15. Alex Coad, 2006. "Towards an explanation of the exponential distribution of firm growth rates," Cahiers de la Maison des Sciences Economiques r06025, Université Panthéon-Sorbonne (Paris 1).
    16. Alex Coad, 2007. "Firm Growth: a Survey," Post-Print halshs-00155762, HAL.
    17. Daria Ciriaci & Pietro Moncada-Paternò-Castello & Peter Voigt, 2016. "Innovation and job creation: a sustainable relation?," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 6(2), pages 189-213, August.
    18. Giulio Bottazzi & Angelo Secchi & Federico Tamagni, 2014. "Financial constraints and firm dynamics," Small Business Economics, Springer, vol. 42(1), pages 99-116, January.
    19. Halvarsson, Daniel, 2013. "Identifying High-Growth Firms," Ratio Working Papers 215, The Ratio Institute.
    20. Oh, Ilfan, 2019. "Autonomy of profit rate distribution and its dynamics from firm size measures: A statistical equilibrium approach," BERG Working Paper Series 146, Bamberg University, Bamberg Economic Research Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:102-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.