IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v428y2015icp103-110.html
   My bibliography  Save this article

Growing scale-free networks with tunable distributions of triad motifs

Author

Listed:
  • Li, Shuguang
  • Yuan, Jianping
  • Shi, Yong
  • Zagal, Juan Cristóbal

Abstract

Network motifs are local structural patterns and elementary functional units of complex networks in real world, which can have significant impacts on the global behavior of these systems. Many models are able to reproduce complex networks mimicking a series of global features of real systems, however the local features such as motifs in real networks have not been well represented. We propose a model to grow scale-free networks with tunable motif distributions through a combined operation of preferential attachment and triad motif seeding steps. Numerical experiments show that the constructed networks have adjustable distributions of the local triad motifs, meanwhile preserving the global features of power-law distributions of node degree, short average path lengths of nodes, and highly clustered structures.

Suggested Citation

  • Li, Shuguang & Yuan, Jianping & Shi, Yong & Zagal, Juan Cristóbal, 2015. "Growing scale-free networks with tunable distributions of triad motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 103-110.
  • Handle: RePEc:eee:phsmap:v:428:y:2015:i:c:p:103-110
    DOI: 10.1016/j.physa.2015.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115001090
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    2. Zhang, Zhongzhi & Rong, Lili & Wang, Bing & Zhou, Shuigeng & Guan, Jihong, 2007. "Local-world evolving networks with tunable clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 639-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    2. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    2. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    3. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    4. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    5. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    6. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    7. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.
    8. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    9. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    10. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    11. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    12. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    13. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    14. Haider, Sajjad & Mariotti, Francesca, 2016. "The orchestration of alliance portfolios: The role of alliance portfolio capability," Scandinavian Journal of Management, Elsevier, vol. 32(3), pages 127-141.
    15. Lotfi, Nastaran & Rodrigues, Francisco A., 2022. "On the effect of memory on the Prisoner’s Dilemma game in correlated networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    16. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    17. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    18. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    19. Csárdi, Gábor & Strandburg, Katherine J. & Zalányi, László & Tobochnik, Jan & Érdi, Péter, 2007. "Modeling innovation by a kinetic description of the patent citation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 783-793.
    20. Wang, Yi & Cao, Jinde & Jin, Zhen & Zhang, Haifeng & Sun, Gui-Quan, 2013. "Impact of media coverage on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5824-5835.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:428:y:2015:i:c:p:103-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.