IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v424y2015icp363-371.html
   My bibliography  Save this article

Community mining with new node similarity by incorporating both global and local topological knowledge in a constrained random walk

Author

Listed:
  • Jiao, Qing-Ju
  • Huang, Yan
  • Shen, Hong-Bin

Abstract

Detection of community is a crucial step to understand the structure and dynamics of complex networks. Most of conventional community detection methods focus on optimizing a certain objective function or on clustering nodes based on their similarities, which leads to a phenomenon that they have preference for specific types of networks but are not general. Using constrained random walk, we exploit global and local topology structures of network to propose a modified transition matrix and further to define a new similarity metric (named ISIM) between two nodes. In contrast to the existing similarities, ISIM does not work directly on the observed data, but in a convergent stable space. This feature makes ISIM robust to the observed noisy data in real-world networks. ISIM not only measures node’s distance, but also captures node’s topology structure in network. Experiments on synthetic and real-world networks demonstrate that ISIM can be successfully applied to community detection in broader types of networks and outperforms other community detection methods.

Suggested Citation

  • Jiao, Qing-Ju & Huang, Yan & Shen, Hong-Bin, 2015. "Community mining with new node similarity by incorporating both global and local topological knowledge in a constrained random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 363-371.
  • Handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:363-371
    DOI: 10.1016/j.physa.2015.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115000242
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Capocci, A. & Servedio, V.D.P. & Caldarelli, G. & Colaiori, F., 2005. "Detecting communities in large networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 669-676.
    3. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    4. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    2. Jiansheng Cai & Wencong Li & Xiaodong Zhang & Jihui Wang, 2024. "New Random Walk Algorithm Based on Different Seed Nodes for Community Detection," Mathematics, MDPI, vol. 12(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Li, Jianyu & Zhou, Jie, 2007. "Chinese character structure analysis based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 629-638.
    3. Šubelj, Lovro & Bajec, Marko, 2011. "Community structure of complex software systems: Analysis and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2968-2975.
    4. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    6. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    7. Li, Junqiu & Wang, Xingyuan & Eustace, Justine, 2013. "Detecting overlapping communities by seed community in weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6125-6134.
    8. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    9. Zhou, Wen & Jia, Yifan, 2017. "Predicting links based on knowledge dissemination in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 561-568.
    10. Gui, Chun & Zhang, Ruisheng & Hu, Rongjing & Huang, Guoming & Wei, Jiaxuan, 2018. "Overlapping communities detection based on spectral analysis of line graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 50-65.
    11. Li, Jianyu & Zhou, Jie & Luo, Xiaoyue & Yang, Zhanxin, 2012. "Chinese lexical networks: The structure, function and formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5254-5263.
    12. Sun, Peng Gang, 2015. "Community detection by fuzzy clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 408-416.
    13. Yu, Jia-Wei & Xie, Wen-Jie & Jiang, Zhi-Qiang, 2018. "Early warning model based on correlated networks in global crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1335-1343.
    14. Yan, Chao & Chang, Zhenhai, 2020. "Modularized convex nonnegative matrix factorization for community detection in signed and unsigned networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    15. Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
    16. Chen, Yi & Wang, Xiaolong & Xiang, Xin & Tang, Buzhou & Chen, Qingcai & Fan, Shixi & Bu, Junzhao, 2017. "Overlapping community detection in weighted networks via a Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 790-801.
    17. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    18. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    19. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    20. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:363-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.