IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp651-658.html
   My bibliography  Save this article

Effect of extreme data loss on heart rate signals quantified by entropy analysis

Author

Listed:
  • Li, Yu
  • Wang, Jun
  • Li, Jin
  • Liu, Dazhao

Abstract

The phenomenon of data loss always occurs in the analysis of large databases. Maintaining the stability of analysis results in the event of data loss is very important. In this paper, we used a segmentation approach to generate a synthetic signal that is randomly wiped from data according to the Gaussian distribution and the exponential distribution of the original signal. Then, the logistic map is used as verification. Finally, two methods of measuring entropy—base-scale entropy and approximate entropy—are comparatively analyzed. Our results show the following: (1) Two key parameters—the percentage and the average length of removed data segments—can change the sequence complexity according to logistic map testing. (2) The calculation results have preferable stability for base-scale entropy analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should be controlled below the range (p=30%), which can provide useful information in clinical applications.

Suggested Citation

  • Li, Yu & Wang, Jun & Li, Jin & Liu, Dazhao, 2015. "Effect of extreme data loss on heart rate signals quantified by entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 651-658.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:651-658
    DOI: 10.1016/j.physa.2014.06.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711400555X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.06.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carsten Schäfer & Michael G. Rosenblum & Jürgen Kurths & Hans-Henning Abel, 1998. "Heartbeat synchronized with ventilation," Nature, Nature, vol. 392(6673), pages 239-240, March.
    2. Li, Jin & Ning, Xinbao, 2007. "Classification of physiologic and synthetic heart rate variability series using base-scale entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 423-428.
    3. McClintock, Peter V.E. & Stefanovska, Aneta, 2002. "Noise and determinism in cardiovascular dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 69-76.
    4. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yin & Li, Jin & Wang, Jun, 2017. "Exploring stability of entropy analysis for signal with different trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 60-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jin & Hu, Jing & Zhang, Yinhong & Zhang, Xiaofeng, 2011. "Dynamical complexity changes during two forms of meditation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2381-2387.
    2. Sviridova, Nina & Sakai, Kenshi, 2015. "Human photoplethysmogram: new insight into chaotic characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 53-63.
    3. Yurii M. Ishbulatov & Tatiana S. Bibicheva & Vladimir I. Gridnev & Mikhail D. Prokhorov & Marina V. Ogneva & Anton R. Kiselev & Anatoly S. Karavaev, 2022. "Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. Zhang, Yin & Li, Jin & Wang, Jun, 2017. "Exploring stability of entropy analysis for signal with different trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 60-67.
    6. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2009. "Fractality in electrocardiographic waveforms for healthy subjects and patients with ventricular fibrillation," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1046-1054.
    7. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2007. "Detrended fluctuation analysis of heart intrabeat dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 429-438.
    8. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    9. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    10. Rodríguez, A. & De León, J. & Fridman, L., 2009. "Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3219-3233.
    11. Mirzayof, Dror & Ashkenazy, Yosef, 2010. "Preservation of long range temporal correlations under extreme random dilution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5573-5580.
    12. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    13. Kaufman, Miron & Zurcher, Ulrich & Sung, Paul S., 2007. "Entropy of electromyography time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 698-707.
    14. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Ana Gavrovska & Goran Zajić & Vesna Bogdanović & Irini Reljin & Branimir Reljin, 2017. "Identification of S1 and S2 Heart Sound Patterns Based on Fractal Theory and Shape Context," Complexity, Hindawi, vol. 2017, pages 1-9, November.
    16. Ekaterina I. Borovkova & Vladimir I. Ponomarenko & Anatoly S. Karavaev & Elizaveta S. Dubinkina & Mikhail D. Prokhorov, 2023. "Method of Extracting the Instantaneous Phases and Frequencies of Respiration from the Signal of a Photoplethysmogram," Mathematics, MDPI, vol. 11(24), pages 1-14, December.
    17. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar, 2016. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 197-203.
    18. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    19. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    20. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:651-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.