IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v413y2014icp565-576.html
   My bibliography  Save this article

Evolutionary community structure discovery in dynamic weighted networks

Author

Listed:
  • Guo, Chonghui
  • Wang, Jiajia
  • Zhang, Zhen

Abstract

Detecting evolutionary community structure in dynamic weighted networks is important for understanding the structure and functions of networks. In this paper, an algorithm which considers the historic community structure of networks is developed to detect evolutionary community structure in dynamic weighted networks. In the proposed algorithm, two measures are proposed to determine whether to add a node to a community and whether to merge two communities to form a new community. The proposed algorithm can automatically discover evolutionary community structure in weighted networks whose number of nodes and communities is changing over time and does not need to determine the number of communities in advance. The algorithm is tested using a synthetic network and two real-word complex networks. Experimental results demonstrate that the proposed algorithm can discover evolutionary community structure in dynamic weighted networks effectively.

Suggested Citation

  • Guo, Chonghui & Wang, Jiajia & Zhang, Zhen, 2014. "Evolutionary community structure discovery in dynamic weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 565-576.
  • Handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:565-576
    DOI: 10.1016/j.physa.2014.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711400569X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordan Cambe & Sebastian Grauwin & Patrick Flandrin & Pablo Jensen, 2022. "A new clustering method to explore the dynamics of research communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4459-4482, August.
    2. Liu, Qiang & Liu, Caihong & Wang, Jiajia & Wang, Xiang & Zhou, Bin & Zou, Peng, 2017. "Evolutionary link community structure discovery in dynamic weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 370-388.
    3. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    4. Xin, Yu & Xie, Zhi-Qiang & Yang, Jing, 2016. "The adaptive dynamic community detection algorithm based on the non-homogeneous random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 241-252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junqiu & Wang, Xingyuan & Cui, Yaozu, 2014. "Uncovering the overlapping community structure of complex networks by maximal cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 398-406.
    2. Li, Junqiu & Wang, Xingyuan & Eustace, Justine, 2013. "Detecting overlapping communities by seed community in weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6125-6134.
    3. Chen, Yi & Wang, Xiaolong & Xiang, Xin & Tang, Buzhou & Chen, Qingcai & Fan, Shixi & Bu, Junzhao, 2017. "Overlapping community detection in weighted networks via a Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 790-801.
    4. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    5. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    6. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    8. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    10. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    11. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    12. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    13. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    14. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    16. Dragicevic, Arnaud Z. & Sinclair-Desgagné, Bernard, 2013. "Sustainable network dynamics," Ecological Modelling, Elsevier, vol. 270(C), pages 43-53.
    17. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 20-38.
    18. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    19. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    20. Sanghoon Lee & Wonjoon Kim, 2017. "The knowledge network dynamics in a mobile ecosystem: a patent citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 717-742, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:565-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.