IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v393y2014icp590-599.html
   My bibliography  Save this article

Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks

Author

Listed:
  • Zhang, Hai-Tian
  • Yu, Tao
  • Sang, Jian-Ping
  • Zou, Xian-Wu

Abstract

Airport networks are a kind of complex systems that display significant fluctuations. To describe this kind of phenomena a dynamical fluctuation model is proposed. In this model the fluctuations in growth rates of weight are exponential. There are two adjustable parameters: the exponent β and the creation probability Pd of a new node. β characterizes the tendency to retain an “optimal” allocation of weights (size of components) for a given kind of networks. Pd reflects the interactive effect between the weight fluctuation and variation of nodes and links (topological structure) for each real network. For airport networks the exponent β is 0.4 and the creation probability Pd is equal to 0.018 (China), 0.025 (US), 0.03 (Brazil) and 0.04 (Europe). This model quantitatively describes and reproduces these real airport networks.

Suggested Citation

  • Zhang, Hai-Tian & Yu, Tao & Sang, Jian-Ping & Zou, Xian-Wu, 2014. "Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 590-599.
  • Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:590-599
    DOI: 10.1016/j.physa.2013.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113008352
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    2. Zhang, Yaping & Peng, Ting & Fu, Chuanyun & Cheng, Shaowu, 2016. "Simulation analysis of factors affecting air route connection in China," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 12-20.
    3. Sun, Xiaoqian & Wandelt, Sebastian, 2014. "Network similarity analysis of air navigation route systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 416-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    2. Ivanova, Inga & Strand, Øivind & Kushnir, Duncan & Leydesdorff, Loet, 2017. "Economic and technological complexity: A model study of indicators of knowledge-based innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 77-89.
    3. Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
    4. Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.
    5. Lengyel, Balázs & Leydesdorff, Loet, 2015. "The Effects of FDI on Innovation Systems in Hungarian Regions: Where is the Synergy Generated?," MPRA Paper 73945, University Library of Munich, Germany.
    6. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    7. Ali Kharrazi & Brian D. Fath & Harald Katzmair, 2016. "Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    8. Loet Leydesdorff & Igone Porto-Gomez, 2019. "Measuring the expected synergy in Spanish regional and national systems of innovation," The Journal of Technology Transfer, Springer, vol. 44(1), pages 189-209, February.
    9. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    10. Ulanowicz, Robert E., 2014. "Reckoning the nonexistent: Putting the science right," Ecological Modelling, Elsevier, vol. 293(C), pages 22-30.
    11. Canning, A.D. & Death, R.G., 2017. "Trophic cascade direction and flow determine network flow stability," Ecological Modelling, Elsevier, vol. 355(C), pages 18-23.
    12. Arreguín-Sánchez, Francisco, 2014. "Measuring resilience in aquatic trophic networks from supply–demand-of-energy relationships," Ecological Modelling, Elsevier, vol. 272(C), pages 271-276.
    13. Kiss, Tibor & Hartung, Katalin & Hetesi, Zsolt, 2019. "Termelőüzem ökológiai szempontú tervezése [Ecologically oriented planning of production units]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 863-886.
    14. Mukherjee, Joyita & Scharler, Ursula M. & Fath, Brian D. & Ray, Santanu, 2015. "Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations," Ecological Modelling, Elsevier, vol. 306(C), pages 160-173.
    15. Bodini, Antonio & Bondavalli, Cristina & Allesina, Stefano, 2012. "Cities as ecosystems: Growth, development and implications for sustainability," Ecological Modelling, Elsevier, vol. 245(C), pages 185-198.
    16. Chaalali, Aurélie & Beaugrand, Grégory & Raybaud, Virginie & Lassalle, Géraldine & Saint-Béat, Blanche & Le Loc’h, François & Bopp, Laurent & Tecchio, Samuele & Safi, Georges & Chifflet, Marina & Lobr, 2016. "From species distributions to ecosystem structure and function: A methodological perspective," Ecological Modelling, Elsevier, vol. 334(C), pages 78-90.
    17. Kharrazi, Ali & Fath, Brian D., 2016. "Measuring global oil trade dependencies: An application of the point-wise mutual information method," Energy Policy, Elsevier, vol. 88(C), pages 271-277.
    18. Chatterjee, Abheek & Layton, Astrid, 2020. "Mimicking nature for resilient resource and infrastructure network design," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Tecchio, Samuele & Rius, Armonie Tous & Dauvin, Jean-Claude & Lobry, Jérémy & Lassalle, Géraldine & Morin, Jocelyne & Bacq, Nicolas & Cachera, Marie & Chaalali, Aurélie & Villanueva, Maria Ching & Niq, 2015. "The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis," Ecological Modelling, Elsevier, vol. 312(C), pages 91-101.
    20. Francisco Orlando Rosales & Brian D. Fath & Grace Yolanda Llerena, 2023. "Quantifying a virtual water metabolic network of the Metropolitan District of Quito, Ecuador using ecological network methods," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1304-1318, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:590-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.