IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i8p1733-1741.html
   My bibliography  Save this article

Investigation of classical and fractional Bose–Einstein condensation for harmonic potential

Author

Listed:
  • Uzar, Neslihan
  • Ballikaya, Sedat

Abstract

In this study, classical and fractional Gross–Pitaevskii (GP) equations were solved for harmonic potential and repulsive interactions between the boson particles using the Homotopy Perturbation Method (HPM) to investigate the ground state dynamics of Bose–Einstein Condensation (BEC). The purpose of writing fractional GP equations is to consider the system in a more realistic manner. The memory effects of non-Markovian processes involving long-range interactions between bosons with the restriction of the ergodic hypothesis and the effect of non-Gaussian distributions of bosons in the condensation can be taken into account with time fractional and space fractional GP equations, respectively. The obtained results of the fractional GP equations differ from the results of the classical one. While the Gauss distribution describing the homogeneous, reversible and unitary system is obtained from the classical GP equation, the probability density of the solution function of fractional GP equations is non-conserved. This situation describes the inhomogeneous, irreversible and non-unitary systems.

Suggested Citation

  • Uzar, Neslihan & Ballikaya, Sedat, 2013. "Investigation of classical and fractional Bose–Einstein condensation for harmonic potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1733-1741.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:8:p:1733-1741
    DOI: 10.1016/j.physa.2012.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010047
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    3. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    6. Yu, Guo-Fu & Tam, Hon-Wah, 2006. "Conservation laws for two (2+1)-dimensional differential–difference systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 189-196.
    7. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    8. Keramati, B., 2009. "An approach to the solution of linear system of equations by He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 152-156.
    9. Demiray, Hilmi, 2006. "Interaction of nonlinear waves governed by Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1185-1189.
    10. Siddiqui, A.M. & Ahmed, M. & Ghori, Q.K., 2007. "Thin film flow of non-Newtonian fluids on a moving belt," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1006-1016.
    11. Shidfar, A. & Molabahrami, A. & Babaei, A. & Yazdanian, A., 2009. "A study on the d-dimensional Schrödinger equation with a power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2154-2158.
    12. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    13. Mădălina Sofia Paşca & Olivia Bundău & Adina Juratoni & Bogdan Căruntu, 2022. "The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    14. Al-Khaled, Kamel, 2007. "Theory and computation in singular boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 678-684.
    15. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    16. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    17. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    18. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    19. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    20. Xu, Wei & Shen, Jianwei, 2008. "Solitary and periodic traveling wave solutions for a class of coupled nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 912-917.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:8:p:1733-1741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.