IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i6p1547-1556.html
   My bibliography  Save this article

Skeleton of weighted social network

Author

Listed:
  • Zhang, X.
  • Zhu, J.

Abstract

In the literature of social networks, understanding topological structure is an important scientific issue. In this paper, we construct a network from mobile phone call records and use the cumulative number of calls as a measure of the weight of a social tie. We extract skeletons from the weighted social network on the basis of the weights of ties, and we study their properties. We find that strong ties can support the skeleton in the network by studying the percolation characters. We explore the centrality of w-skeletons based on the correlation between some centrality measures and the skeleton index w of a vertex, and we find that the average centrality of a w-skeleton increases as w increases. We also study the cumulative degree distribution of the successive w-skeletons and find that as w increases, the w-skeleton tends to become more self-similar. Furthermore, fractal characteristics appear in higher w-skeletons. We also explore the global information diffusion efficiency of w-skeletons using simulations, from which we can see that the ties in the high w-skeletons play important roles in information diffusion. Identifying such a simple structure of a w-skeleton is a step forward toward understanding and representing the topological structure of weighted social networks.

Suggested Citation

  • Zhang, X. & Zhu, J., 2013. "Skeleton of weighted social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1547-1556.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:6:p:1547-1556
    DOI: 10.1016/j.physa.2012.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010217
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tao & Xiao, Shiying & Yan, Jun & Zhang, Panpan, 2021. "Regional and sectoral structures of the Chinese economy: A network perspective from multi-regional input–output tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Xiaohang Zhang & Zecong Zhang & Han Zhao & Qi Wang & Ji Zhu, 2014. "Extracting the Globally and Locally Adaptive Backbone of Complex Networks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    2. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    3. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Chen, Mu & Yu, Boming & Xu, Peng & Chen, Jun, 2007. "A new deterministic complex network model with hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 707-717.
    5. Ou, Ruiqiu & Yang, Jianmei, 2012. "On structural properties of scale-free networks with finite size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 887-894.
    6. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    7. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    8. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    9. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    10. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    11. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    12. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    13. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    14. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    15. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    16. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    17. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    18. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    19. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    20. Valentini, Luca & Perugini, Diego & Poli, Giampiero, 2007. "The “small-world” topology of rock fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 323-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:6:p:1547-1556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.