IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i21p5536-5541.html
   My bibliography  Save this article

Network connectivity entropy and its application on network connectivity reliability

Author

Listed:
  • Wu, Liusan
  • Tan, Qingmei
  • Zhang, Yuehui

Abstract

The network structure entropy has served as one of the index measuring network heterogeneity, but it gives no considerations to the impact of isolated nodes on the network structure. In addition, the all-terminal reliability is zero and is unable to compare it between disconnected networks. Therefore, the concept of network connectivity entropy is suggested to remove the current bottleneck and helps facilitate new index in terms of network connectivity reliability. This study fully proves the rules as follows: when the edges of network are diminishing, the newly-established network connectivity reliability will remain unchanged or become weaker; conversely, when the edges of network are increasing, the network connectivity reliability will remain unchanged or become stronger. Thus, the proposed index of network connectivity reliability is proved reasonable. Furthermore, the impaired metro network of Nanjing city is exemplified to demonstrate the validity and practicability of network connectivity reliability. The result shows that this new approach is in good position to compute network connectivity reliability quickly and effectively, and also to compare it between different networks.

Suggested Citation

  • Wu, Liusan & Tan, Qingmei & Zhang, Yuehui, 2013. "Network connectivity entropy and its application on network connectivity reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5536-5541.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:21:p:5536-5541
    DOI: 10.1016/j.physa.2013.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113006171
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramirez-Marquez, José Emmanuel & Rocco, Claudio M., 2008. "All-terminal network reliability optimization via probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1689-1697.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    2. Singh, Priti & Chakraborty, Abhishek & Manoj, B.S., 2017. "Link Influence Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 701-713.
    3. He, Zhichao & Wang, Yanhui & Xia, Weifu & Shen, Yue & Hao, Yucheng & Ren, Qiuyang, 2023. "A method for reliability assessment of complex electromechanical system based on improved network connectivity entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    4. Wang, Shuang & Jia, Haiying & Lu, Jing & Yang, Dong, 2023. "Crude oil transportation route choices: A connectivity reliability-based approach," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
    6. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    7. Jesus Gonzalez-Feliu & Mario Chong & Jorge Vargas-Florez & Irineu de Brito & Carlos Osorio-Ramirez & Eric Piatyszek & Renato Quiliche Altamirano, 2020. "The Maturity of Humanitarian Logistics against Recurrent Crises," Social Sciences, MDPI, vol. 9(6), pages 1-22, May.
    8. Shui Yu & He Liu & Lu Bai & Fuhong Han, 2019. "Study on the Suitability of Passive Energy in Public Institutions in China," Energies, MDPI, vol. 12(12), pages 1-14, June.
    9. Jiang, Jingchi & Zheng, Jichuan & Zhao, Chao & Su, Jia & Guan, Yi & Yu, Qiubin, 2016. "Clinical-decision support based on medical literature: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 42-54.
    10. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocco S, Claudio M. & Ramirez-Marquez, José Emmanuel, 2009. "Deterministic network interdiction optimization via an evolutionary approach," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 568-576.
    2. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    3. Concho, Ana Lisbeth & Ramirez-Marquez, Jose Emmanuel, 2010. "An evolutionary algorithm for port-of-entry security optimization considering sensor thresholds," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 255-266.
    4. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    5. Padmavathy, N. & Chaturvedi, Sanjay K., 2013. "Evaluation of mobile ad hoc network reliability using propagation-based link reliability model," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 1-9.
    6. Romulo B. Magnaye & Brian J. Sauser & Jose E. Ramirez‐Marquez, 2010. "System development planning using readiness levels in a cost of development minimization model," Systems Engineering, John Wiley & Sons, vol. 13(4), pages 311-323, December.
    7. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Levitin, Gregory, 2011. "Optimal network protection against diverse interdictor strategies," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 374-382.
    9. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Zhu, Huaxing & Zhang, Chi, 2019. "Expanding a complex networked system for enhancing its reliability evaluated by a new efficient approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 205-220.
    12. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    13. Altiparmak, Fulya & Dengiz, Berna, 2009. "A cross entropy approach to design of reliable networks," European Journal of Operational Research, Elsevier, vol. 199(2), pages 542-552, December.
    14. Guozhen Xiong & Chi Zhang & Fei Zhou, 2017. "A robust reliability redundancy allocation problem under abnormal external failures guided by a new importance measure," Journal of Risk and Reliability, , vol. 231(2), pages 180-199, April.
    15. Ana Concho & José Ramirez-Marquez, 2012. "Optimal design of container inspection strategies considering multiple objectives via an evolutionary approach," Annals of Operations Research, Springer, vol. 196(1), pages 167-187, July.
    16. Abdullah Konak & Alice E. Smith, 2011. "Efficient Optimization of Reliable Two-Node Connected Networks: A Biobjective Approach," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 430-445, August.
    17. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    18. Han, Fangyuan & Zio, Enrico, 2019. "A multi-perspective framework of analysis of critical infrastructures with respect to supply service, controllability and topology," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 1-13.
    19. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    20. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:21:p:5536-5541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.