IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i10p2555-2563.html
   My bibliography  Save this article

Detecting communities by the core-vertex and intimate degree in complex networks

Author

Listed:
  • Wang, Xingyuan
  • Li, Junqiu

Abstract

In this paper, we present a new approach to extract communities in the complex networks with considerable accuracy. We introduce the core-vertex and the intimate degree between the community and its neighboring vertices. First, we find the core-vertices as the initial community. These core-vertices are then expanded using intimate degree function during extracting community structure from the given network. In addition, our algorithm successfully finds common nodes between communities. Experimental results using some real-world networks data shows that the performance of our algorithm is satisfactory.

Suggested Citation

  • Wang, Xingyuan & Li, Junqiu, 2013. "Detecting communities by the core-vertex and intimate degree in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2555-2563.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2555-2563
    DOI: 10.1016/j.physa.2013.01.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113000915
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.01.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Duanbing & Fu, Yan & Shang, Mingsheng, 2009. "A fast and efficient heuristic algorithm for detecting community structures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2741-2749.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    2. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    4. Wang, Hongjue, 2019. "An universal algorithm for source location in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 620-630.
    5. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    6. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    7. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Luo, Chao & Zhang, Xiaolin & Liu, Hong & Shao, Rui, 2016. "Cooperation in memory-based prisoner’s dilemma game on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 560-569.
    9. Zhang, Hong, 2015. "Moderate tolerance promotes tag-mediated cooperation in spatial Prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 52-61.
    10. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    11. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    12. Wu, Jianshe & Hou, Yunting & Jiao, Yang & Li, Yong & Li, Xiaoxiao & Jiao, Licheng, 2015. "Density shrinking algorithm for community detection with path based similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 218-228.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    2. Angelito Calma & José Martí-Parreño & Martin Davies, 2019. "Journal of the Academy of Marketing Science 1973–2018: an analytical retrospective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 879-908, May.
    3. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    4. Gong, Maoguo & Ma, Lijia & Zhang, Qingfu & Jiao, Licheng, 2012. "Community detection in networks by using multiobjective evolutionary algorithm with decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4050-4060.
    5. Li, Junqiu & Wang, Xingyuan & Cui, Yaozu, 2014. "Uncovering the overlapping community structure of complex networks by maximal cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 398-406.
    6. Hanlin You & Mengjun Li & Jiang Jiang & Bingfeng Ge & Xueting Zhang, 2017. "Evolution monitoring for innovation sources using patent cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 693-715, May.
    7. Zhang, Dawei & Xie, Fuding & Zhang, Yong & Dong, Fangyan & Hirota, Kaoru, 2010. "Fuzzy analysis of community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5319-5327.
    8. Li, Junqiu & Wang, Xingyuan & Eustace, Justine, 2013. "Detecting overlapping communities by seed community in weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6125-6134.
    9. Sun, Hong-liang & Ch’ng, Eugene & Yong, Xi & Garibaldi, Jonathan M. & See, Simon & Chen, Duan-bing, 2018. "A fast community detection method in bipartite networks by distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 108-120.
    10. Liu, Xu & Forrest, Jeffrey Yi-Lin & Luo, Qiang & Yi, Dong-Yun, 2012. "Detecting community structure using biased random merging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1797-1810.
    11. Cui, Yaozu & Wang, Xingyuan & Li, Junqiu, 2014. "Detecting overlapping communities in networks using the maximal sub-graph and the clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 85-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2555-2563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.