IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i4p825-836.html
   My bibliography  Save this article

Explaining traffic patterns at on-ramp vicinity by a driver perception model in the framework of three-phase traffic theory

Author

Listed:
  • He, Shuyan
  • Guan, Wei
  • Song, Liying

Abstract

In traffic system, driving behaviors change with the surrounding traffic perceived by drivers, resulting in the complex spatio-temporal traffic patterns. Accordingly, in the majority of traffic models, vehicle accelerations are described by dynamic equations based on driving behavior, system dynamics and some underlying steady-state velocity-gap (bumper-to-bumper spacing) relation in order to guarantee the realistic human behavior. This paper proposes a deterministic car-following model based on a multi-branch fundamental diagram with each branch representing a particular category of driving style. Furthermore, an additional dynamic perception equation is introduced to reflect the driving style adaptation in response to the change in surrounding traffic situations. With simulation based on the proposed “driver perception model” (DP model), empirical findings of traffic breakdown and observed spatio-temporal patterns at on-ramp vicinity are reproduced. Furthermore, comparison results show the consistency between numerical simulation and the real traffic data of Beijing urban freeway.

Suggested Citation

  • He, Shuyan & Guan, Wei & Song, Liying, 2010. "Explaining traffic patterns at on-ramp vicinity by a driver perception model in the framework of three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 825-836.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:825-836
    DOI: 10.1016/j.physa.2009.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008644
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    2. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    3. Nagai, Ryoichi & Nagatani, Takashi & Yamada, Akio, 2005. "Phase diagram in multi-phase traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 530-550.
    4. Guan, Wei & He, Shuyan, 2008. "Statistical features of traffic flow on urban freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 944-954.
    5. Dirk Helbing & Bernardo A. Huberman, 1998. "Coherent moving states in highway traffic," Nature, Nature, vol. 396(6713), pages 738-740, December.
    6. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    7. Helbing, Dirk & Batic, Davide & Schönhof, Martin & Treiber, Martin, 2002. "Modelling widely scattered states in ‘synchronized’ traffic flow and possible relevance for stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 251-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Wei & He, Shuyan, 2008. "Statistical features of traffic flow on urban freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 944-954.
    2. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    3. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    4. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    5. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    6. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    7. Siqueira, Adriano F. & Peixoto, Carlos J.T. & Wu, Chen & Qian, Wei-Liang, 2016. "Effect of stochastic transition in the fundamental diagram of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 1-13.
    8. Gong, Siyuan & Du, Lili, 2016. "Optimal location of advance warning for mandatory lane change near a two-lane highway off-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 1-30.
    9. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    10. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    11. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    12. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    13. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    14. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    15. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    16. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    17. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    18. Zhang, Qinglong & Liu, Shuzhi, 2023. "The Riemann problem and a Godunov-type scheme for a traffic flow model on two lanes with two velocities," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    19. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:825-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.