IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i19p4096-4104.html
   My bibliography  Save this article

Long-range dependence in tree-ring width time series of Austrocedrus Chilensis revealed by means of the detrended fluctuation analysis

Author

Listed:
  • Telesca, Luciano
  • Lovallo, Michele

Abstract

By using the detrended fluctuation analysis and detrended moving average method, 823 time series of tree-ring widths in Austrocedrus Chilensis in Patagonia were analyzed. The tree-ring widths of A. Chilensis have been widely used for climatological studies. The results point out to the presence of significant scaling in the temporal fluctuations of tree-ring, which is not due to singular probability density function of the widths but due to the presence of long-range correlations. Such results are in good agreement with those concerning the evidence of long-range dependencies in weather time series.

Suggested Citation

  • Telesca, Luciano & Lovallo, Michele, 2010. "Long-range dependence in tree-ring width time series of Austrocedrus Chilensis revealed by means of the detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4096-4104.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:19:p:4096-4104
    DOI: 10.1016/j.physa.2010.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110004619
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monetti, Roberto A. & Havlin, Shlomo & Bunde, Armin, 2003. "Long-term persistence in the sea surface temperature fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 581-589.
    2. Telesca, Luciano, 2007. "Cycles, scaling and crossover phenomenon in length of the day (LOD) time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 459-464.
    3. Sergio Arianos & Anna Carbone, 2008. "Cross-correlation of long-range correlated series," Papers 0804.2064, arXiv.org, revised Mar 2009.
    4. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozger, Mehmet, 2011. "Scaling characteristics of ocean wave height time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 981-989.
    2. Lian, Liping & Song, Weiguo & Richard, Yuen Kwok Kit & Ma, Jian & Telesca, Luciano, 2017. "Long-range dependence and time-clustering behavior in pedestrian movement patterns in stampedes: The Love Parade case-study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 265-274.
    3. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, José Vicente Cardoso & Perini, Noéle Bissoli & Moret, Marcelo Albano & Nascimento, Erick Giovani Sperandio & Moreira, Davidson Martins, 2021. "Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon," Energy, Elsevier, vol. 217(C).
    2. Jiang, Lei, 2018. "Mean wind speed persistence over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 211-217.
    3. Zhang, W.F. & Zhao, Q., 2015. "Asymmetric long-term persistence analysis in sea surface temperature anomaly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 314-318.
    4. Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2010. "Different scaling behaviors in daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4087-4095.
    5. Gong, Huanhuan & Fu, Zuntao, 2022. "Beyond linear correlation: Strong nonlinear structures in diurnal temperature range variability over southern China," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Zhang, Feng & Ren, Hang & Miao, Lijuan & Lei, Yadong & Duan, Mingkeng, 2019. "Simulation of daily precipitation from CMIP5 in the Qinghai-Tibet Plateau," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15, pages 68-74.
    7. Rybski, Diego & Bunde, Armin, 2009. "On the detection of trends in long-term correlated records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1687-1695.
    8. Lu, Feiyu & Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2012. "Universal scaling behaviors of meteorological variables’ volatility and relations with original records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4953-4962.
    9. Wang, Haifeng & Shang, Pengjian & Xia, Jianan, 2016. "Compositional segmentation and complexity measurement in stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 67-73.
    10. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    12. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    13. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    14. Ladislav Kristoufek & Paulo Ferreira, 2018. "Capital asset pricing model in Portugal: Evidence from fractal regressions," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 17(3), pages 173-183, November.
    15. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    16. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    17. Todea, Alexandru, 2016. "Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 208-215.
    18. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    19. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    20. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:19:p:4096-4104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.