IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics096007792200916x.html
   My bibliography  Save this article

Beyond linear correlation: Strong nonlinear structures in diurnal temperature range variability over southern China

Author

Listed:
  • Gong, Huanhuan
  • Fu, Zuntao

Abstract

The correlation structure and dynamical properties in diurnal temperature range (DTR) variability over southern China during 1979–2018 are studied in this study. Detailed results show that the linear correlation of DTR variability can be well captured by the first-order autoregressive (AR (1)) process over most of the southern stations. Since the standard detrended fluctuation analysis (DFA) based on power law assumption is designed to determine the long-range correlation strength but not the short-term correlation strength, a novel way of modified DFA is proposed to estimate the parameter of AR (1) process well over the range of short time scales. Moreover, beyond the linear correlation, the strong nonlinear structures are also detected in DTR variability with marked residual structures, i.e. significant time-reversal asymmetry and/or residual delay maps (RDM) with trough-ridge asymmetry. The mixed structures of linear correlation and strong nonlinear features improve the understandings on the prediction and predictability of DTR variability.

Suggested Citation

  • Gong, Huanhuan & Fu, Zuntao, 2022. "Beyond linear correlation: Strong nonlinear structures in diurnal temperature range variability over southern China," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200916x
    DOI: 10.1016/j.chaos.2022.112737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200916X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monetti, Roberto A. & Havlin, Shlomo & Bunde, Armin, 2003. "Long-term persistence in the sea surface temperature fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 581-589.
    2. Fu, Shu & Huang, Yu & Feng, Tao & Nian, Da & Fu, Zuntao, 2019. "Regional contrasting DTR’s predictability over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 282-292.
    3. Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2010. "Different scaling behaviors in daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4087-4095.
    4. Zhang, Boer & Xie, Fenghua & Fu, Zunhai & Fu, Zuntao, 2019. "Comparative study of multiple measures on temporal irreversibility of daily air temperature anomaly variations over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1387-1399.
    5. Lin, Guangxing & Fu, Zuntao, 2008. "A universal model to characterize different multi-fractal behaviors of daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 573-579.
    6. Marc Höll & Holger Kantz, 2015. "The relationship between the detrendend fluctuation analysis and the autocorrelation function of a signal," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(12), pages 1-7, December.
    7. Lu, Feiyu & Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2012. "Universal scaling behaviors of meteorological variables’ volatility and relations with original records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4953-4962.
    8. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Lei, 2018. "Mean wind speed persistence over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 211-217.
    2. Lu, Feiyu & Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2012. "Universal scaling behaviors of meteorological variables’ volatility and relations with original records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4953-4962.
    3. Jiang, Lei & Zhang, Jiping & Liu, Xinwei & Li, Fei, 2016. "Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 783-792.
    4. Yu, Zhongde & Huang, Yu & Fu, Zuntao, 2020. "Nonlinear strength quantifier based on phase correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. da Silva, Hérica Santos & Silva, José Rodrigo Santos & Stosic, Tatijana, 2020. "Multifractal analysis of air temperature in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Kalamaras, N. & Philippopoulos, K. & Deligiorgi, D. & Tzanis, C.G. & Karvounis, G., 2017. "Multifractal scaling properties of daily air temperature time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 38-43.
    7. Santos, José Vicente Cardoso & Perini, Noéle Bissoli & Moret, Marcelo Albano & Nascimento, Erick Giovani Sperandio & Moreira, Davidson Martins, 2021. "Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon," Energy, Elsevier, vol. 217(C).
    8. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    9. Yuan, Naiming & Fu, Zuntao, 2014. "Different spatial cross-correlation patterns of temperature records over China: A DCCA study on different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 71-79.
    10. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Telesca, Luciano & Lovallo, Michele, 2010. "Long-range dependence in tree-ring width time series of Austrocedrus Chilensis revealed by means of the detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4096-4104.
    12. Fu, Shu & Huang, Yu & Feng, Tao & Nian, Da & Fu, Zuntao, 2019. "Regional contrasting DTR’s predictability over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 282-292.
    13. Fu, Zuntao & Shi, Liu & Xie, Fenghua & Piao, Lin, 2016. "Nonlinear features of Northern Annular Mode variability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 390-394.
    14. Zhang, W.F. & Zhao, Q., 2015. "Asymmetric long-term persistence analysis in sea surface temperature anomaly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 314-318.
    15. Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2010. "Different scaling behaviors in daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4087-4095.
    16. Zhang, Feng & Ren, Hang & Miao, Lijuan & Lei, Yadong & Duan, Mingkeng, 2019. "Simulation of daily precipitation from CMIP5 in the Qinghai-Tibet Plateau," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15, pages 68-74.
    17. Rybski, Diego & Bunde, Armin, 2009. "On the detection of trends in long-term correlated records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1687-1695.
    18. Zhang, Boer & Xie, Fenghua & Fu, Zunhai & Fu, Zuntao, 2019. "Comparative study of multiple measures on temporal irreversibility of daily air temperature anomaly variations over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1387-1399.
    19. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200916x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.