IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v383y2007i2p466-472.html
   My bibliography  Save this article

Traveling wave solutions of a reaction–diffusion model for bacterial growth

Author

Listed:
  • Mansour, M.B.A.

Abstract

In this paper, we consider a reaction–diffusion model for the bacterial growth. Mathematical analysis on the traveling wave solutions of the model is performed. This includes traveling wave analysis and numerical simulations of wave front propagation for a special case. Specifically, we show that such solutions exist only for wave speeds greater than some minimum speed giving wave with a sharp front. The minimum speed is estimated and the wave profile is calculated and compared with different numerical methods.

Suggested Citation

  • Mansour, M.B.A., 2007. "Traveling wave solutions of a reaction–diffusion model for bacterial growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 466-472.
  • Handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:466-472
    DOI: 10.1016/j.physa.2007.04.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107004128
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.04.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golding, Ido & Kozlovsky, Yonathan & Cohen, Inon & Ben-Jacob, Eshel, 1998. "Studies of bacterial branching growth using reaction–diffusion models for colonial development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 260(3), pages 510-554.
    2. Mimura, Masayasu & Sakaguchi, Hideo & Matsushita, Mitsugu, 2000. "Reaction–diffusion modelling of bacterial colony patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 283-303.
    3. Matsushita, M & Wakita, J & Itoh, H & Watanabe, K & Arai, T & Matsuyama, T & Sakaguchi, H & Mimura, M, 1999. "Formation of colony patterns by a bacterial cell population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 190-199.
    4. Matsushita, M. & Wakita, J. & Itoh, H. & Ràfols, I. & Matsuyama, T. & Sakaguchi, H. & Mimura, M., 1998. "Interface growth and pattern formation in bacterial colonies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 249(1), pages 517-524.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badoual, M. & Derbez, P. & Aubert, M. & Grammaticos, B., 2009. "Simulating the migration and growth patterns of Bacillus subtilis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 549-559.
    2. Samvel Sarukhanian & Anna Maslovskaya & Christina Kuttler, 2023. "Three-Dimensional Cellular Automaton for Modeling of Self-Similar Evolution in Biofilm-Forming Bacterial Populations," Mathematics, MDPI, vol. 11(15), pages 1-18, July.
    3. Lin Chen & Javad Noorbakhsh & Rhys M Adams & Joseph Samaniego-Evans & Germaine Agollah & Dmitry Nevozhay & Jennie Kuzdzal-Fick & Pankaj Mehta & Gábor Balázsi, 2014. "Two-Dimensionality of Yeast Colony Expansion Accompanied by Pattern Formation," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-14, December.
    4. Banitz, Thomas & Fetzer, Ingo & Johst, Karin & Wick, Lukas Y. & Harms, Hauke & Frank, Karin, 2011. "Assessing biodegradation benefits from dispersal networks," Ecological Modelling, Elsevier, vol. 222(14), pages 2552-2560.
    5. Leyva, J. Francisco & Málaga, Carlos & Plaza, Ramón G., 2013. "The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5644-5662.
    6. Ben-Jacob, Eshel & Cohen, Inon & Golding, Ido & Gutnick, David L. & Tcherpakov, Marianna & Helbing, Dirk & Ron, Ilan G., 2000. "Bacterial cooperative organization under antibiotic stress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 247-282.
    7. Golding, Ido & Kozlovsky, Yonathan & Cohen, Inon & Ben-Jacob, Eshel, 1998. "Studies of bacterial branching growth using reaction–diffusion models for colonial development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 260(3), pages 510-554.
    8. Muzzio, Nicolás E. & Horowitz, Claudio M. & Azzaroni, Omar & Moya, Sergio E. & Pasquale, Miguel A., 2021. "Tilted mammalian cell colony propagation dynamics on patterned substrates," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Ron, Ilan G. & Golding, Ido & Lifsitz-Mercer, Beatrice & Ben-Jacob, Eshel, 2003. "Bursts of sectors in expanding bacterial colonies as a possible model for tumor growth and metastases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 485-496.
    10. Chapwanya, Michael & Dumani, Phindile, 2023. "Stationary and oscillatory patterns in microbial population under environmental stress," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 370-383.
    11. Gafiychuk, V.V. & Datsko, B.Yo., 2006. "Pattern formation in a fractional reaction–diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 300-306.
    12. Tatek, Yergou B. & Slater, Gary W., 2006. "A simulation model of biofilms with autonomous cells: I. Analysis of a two-dimensional version," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 382-402.
    13. Kaoru Sugimura & Kohei Shimono & Tadashi Uemura & Atsushi Mochizuki, 2007. "Self-organizing Mechanism for Development of Space-filling Neuronal Dendrites," PLOS Computational Biology, Public Library of Science, vol. 3(11), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:466-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.