IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v377y2007i1p67-78.html
   My bibliography  Save this article

On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model

Author

Listed:
  • Masi, Marco

Abstract

The aim of this paper is to investigate the q→1/q duality in an information-entropy theory of all q-generalized entropy functionals (Tsallis, Renyi and Sharma–Mittal measures) in the light of a representation based on generalized exponential and logarithm functions subjected to Kolmogorov's and Nagumo's averaging. We show that it is precisely in this representation that the form invariance of all entropy functionals is maintained under the action of this duality. The generalized partition function also results to be a scalar invariant under the q→1/q transformation which can be interpreted as a non-extensive two-dimensional Ising model duality between systems governed by two different power law long-range interactions and temperatures. This does not hold only for Tsallis statistics, but is a characteristic feature of all stationary distributions described by q-exponential Boltzmann factors.

Suggested Citation

  • Masi, Marco, 2007. "On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 67-78.
  • Handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:67-78
    DOI: 10.1016/j.physa.2006.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106011940
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Touchette, Hugo, 2002. "When is a quantity additive, and when is it extensive?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 84-88.
    2. Andrade, R.F.S., 1994. "Remarks on the behavior of the Ising chain in the generalized statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 486-494.
    3. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    4. Frank, T.D. & Daffertshofer, A., 2000. "Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(3), pages 351-366.
    5. Salazar, R. & Toral, R., 2001. "Thermostatistics of extensive and non-extensive systems using generalized entropies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 290(1), pages 159-191.
    6. Almeida, M.P., 2001. "Generalized entropies from first principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 424-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asgarani, Somayeh & Mirza, Behrouz, 2015. "Two-parameter entropies, Sk,r, and their dualities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 185-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Potiguar, F.Q & Costa, U.M.S, 2003. "Fluctuation of energy in the generalized thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 482-492.
    2. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.
    3. Campisi, Michele, 2007. "Thermodynamics with generalized ensembles: The class of dual orthodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 501-517.
    4. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    5. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    6. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    7. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    8. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.
    9. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    10. Ou, Congjie & Chen, Jincan & Wang, Qiuping A., 2006. "Temperature definition and fundamental thermodynamic relations in incomplete statistics," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 518-521.
    11. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    12. Tsallis, Constantino & Borges, Ernesto P., 2023. "Time evolution of nonadditive entropies: The logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Zozor, S. & Vignat, C., 2007. "On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 499-517.
    14. Naudts, Jan, 2004. "Generalized thermostatistics and mean-field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 279-300.
    15. Liu, Yanxiu & Xu, Cheng & Huang, Zhifu & Lin, Bihong, 2017. "The internal energy expression of a long-range interaction complex system and its statistical physical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 423-427.
    16. Xie, Rongrong & Deng, Shengfeng & Deng, Weibing & Pato, Mauricio P., 2022. "Generalized Poisson ensemble," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    17. Dukkipati, Ambedkar & Bhatnagar, Shalabh & Murty, M. Narasimha, 2007. "On measure-theoretic aspects of nonextensive entropy functionals and corresponding maximum entropy prescriptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 758-774.
    18. Nishiyama, Tomohiro, 2019. "L^p-norm inequality using q-moment and its applications," OSF Preprints 7yzvj, Center for Open Science.
    19. Takahashi, Taiki, 2009. "Tsallis’ non-extensive free energy as a subjective value of an uncertain reward," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 715-719.
    20. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:67-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.