IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i5p3027-3034.html
   My bibliography  Save this article

Generalized entropic structures and non-generality of Jaynes’ Formalism

Author

Listed:
  • Oikonomou, Thomas
  • Tirnakli, Ugur

Abstract

The extremization of an appropriate entropic functional may yield to the probability distribution functions maximizing the respective entropic structure. This procedure is known in Statistical Mechanics and Information Theory as Jaynes’ Formalism and has been up to now a standard methodology for deriving the aforementioned distributions. However, the results of this formalism do not always coincide with the ones obtained following different approaches. In this study we analyse these inconsistencies in detail and demonstrate that Jaynes’ formalism leads to correct results only for specific entropy definitions.

Suggested Citation

  • Oikonomou, Thomas & Tirnakli, Ugur, 2009. "Generalized entropic structures and non-generality of Jaynes’ Formalism," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3027-3034.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3027-3034
    DOI: 10.1016/j.chaos.2009.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oikonomou, Th., 2007. "Properties of the “non-extensive Gaussian” entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 155-163.
    2. Jizba, Petr & Arimitsu, Toshihico, 2006. "Towards information theory for q-nonextensive statistics without q-deformed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 76-84.
    3. Oikonomou, Th., 2007. "Tsallis, Rényi and nonextensive Gaussian entropy derived from the respective multinomial coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 119-134.
    4. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    5. Borges, Ernesto P., 2004. "A possible deformed algebra and calculus inspired in nonextensive thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 95-101.
    6. Lenzi, E.K. & Mendes, R.S. & da Silva, L.R., 2000. "Statistical mechanics based on Renyi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 337-345.
    7. Gorban, Pavel, 2003. "Monotonically equivalent entropies and solution of additivity equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(3), pages 380-390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eslami Giski, Zahra & Ebrahimzadeh, Abolfazl & Markechová, Dagmar, 2019. "Rényi entropy of fuzzy dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 244-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oikonomou, Th., 2007. "Tsallis, Rényi and nonextensive Gaussian entropy derived from the respective multinomial coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 119-134.
    2. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    3. Zozor, S. & Vignat, C., 2007. "On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 499-517.
    4. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    5. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    6. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    7. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.
    8. Nelson, Kenric P. & Kon, Mark A. & Umarov, Sabir R., 2019. "Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 248-257.
    9. Suyari, Hiroki, 2006. "Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 63-82.
    10. Dukkipati, Ambedkar & Murty, M. Narasimha & Bhatnagar, Shalabh, 2006. "Nonextensive triangle equality and other properties of Tsallis relative-entropy minimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 124-138.
    11. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    12. Kin Keung Lai & Shashi Kant Mishra & Ravina Sharma & Manjari Sharma & Bhagwat Ram, 2023. "A Modified q-BFGS Algorithm for Unconstrained Optimization," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    13. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    14. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    15. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.
    16. Megías, E. & Timóteo, V.S. & Gammal, A. & Deppman, A., 2022. "Bose–Einstein condensation and non-extensive statistics for finite systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    17. Martinez, Alexandre Souto & González, Rodrigo Silva & Terçariol, César Augusto Sangaletti, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5679-5687.
    18. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    19. Ou, Congjie & Chen, Jincan & Wang, Qiuping A., 2006. "Temperature definition and fundamental thermodynamic relations in incomplete statistics," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 518-521.
    20. Andrew Caplin & Mark Dean & John Leahy, 2022. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1676-1715.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3027-3034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.