IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v287y2000i3p599-612.html
   My bibliography  Save this article

Stochastic urn models of innovation and search dynamics

Author

Listed:
  • Ebeling, Werner
  • Molgedey, Lutz
  • Reimann, Axel

Abstract

This work is devoted to applications of the Ehrenfest urn model to innovation and search processes. In the first part we discuss systems of two urns serving as models of innovation processes. The elementary act of innovation is considered as a transition from old (technologies, way of production, behavior, decisions) to new. The survival probability of the new under the influence of stochastic effects is discussed. In the second part we study systems of s⪢1 urns serving as models for optimal solution searching in optimization problems. The problem is to find the minimum on a large set of real numbers Ui using a total of N seekers (N≃2–100) simultaneously. The potential Ui is defined on the integer set i=1,…,s, where s is extremely large. In particular, we consider the frustrated periodic strings and the merit problem. The known equations for thermodynamic search processes and for simple models of biological evolution are unified by defining a two-parameter family of equations which embeds both cases. The search parameters are controlled by means of seeker ensemble dispersion.

Suggested Citation

  • Ebeling, Werner & Molgedey, Lutz & Reimann, Axel, 2000. "Stochastic urn models of innovation and search dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 599-612.
  • Handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:599-612
    DOI: 10.1016/S0378-4371(00)00396-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100003964
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00396-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galam, Serge, 1999. "Application of statistical physics to politics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schindler, Michael & Talkner, Peter & Hänggi, Peter, 2005. "Escape rates in periodically driven Markov processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(1), pages 40-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    2. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    4. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    5. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    6. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    7. Balankin, Alexander S. & Martínez Cruz, Miguel Ángel & Martínez, Alfredo Trejo, 2011. "Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3876-3887.
    8. Qesmi, Redouane, 2021. "Dynamics of an opinion model with threshold-type delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Pires, Marcelo A. & Crokidakis, Nuno, 2017. "Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 167-179.
    10. Fang Wu & Bernardo A. Huberman, 2004. "Social Structure and Opinion Formation," Computational Economics 0407002, University Library of Munich, Germany.
    11. Hendrickx, Julien M., 2008. "Order preservation in a generalized version of Krause’s opinion dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5255-5262.
    12. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    13. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    14. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    15. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    16. Rowden, Jessica & Lloyd, David J.B. & Gilbert, Nigel, 2014. "A model of political voting behaviours across different countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 609-625.
    17. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    18. Gimenez, M. Cecilia & Paz García, Ana Pamela & Burgos Paci, Maxi A. & Reinaudi, Luis, 2016. "Range of interaction in an opinion evolution model of ideological self-positioning: Contagion, hesitance and polarization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 320-330.
    19. Deng, Lei & Liu, Yun & Xiong, Fei, 2013. "An opinion diffusion model with clustered early adopters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3546-3554.
    20. Mehrdad Agha Mohammad Ali Kermani & Reza Ghesmati & Masoud Jalayer, 2018. "Opinion-Aware Influence Maximization: How To Maximize A Favorite Opinion In A Social Network?," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:599-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.