IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v344y2004i1p216-220.html
   My bibliography  Save this article

ARCH–GARCH approaches to modeling high-frequency financial data

Author

Listed:
  • Podobnik, Boris
  • Ivanov, Plamen Ch.
  • Grosse, Ivo
  • Matia, Kaushik
  • Eugene Stanley, H.

Abstract

We model the power-law stability in distribution of returns for S&P500 index by the GARCH process which we use to account for the long memory in the variance correlations. Precisely, we analyze the distributions corresponding to temporal aggregation of the GARCH process, i.e., the sum of n GARCH variables. The stability in the power-law tails is controlled by the GARCH parameters. We model the crossover behavior in magnitude correlations of returns by the so-called two-FIARCH process. Besides detrended fluctuation analysis, we employ the method proposed by Geweke and Porter-Hudak to estimate the fractional parameter in magnitude correlations.

Suggested Citation

  • Podobnik, Boris & Ivanov, Plamen Ch. & Grosse, Ivo & Matia, Kaushik & Eugene Stanley, H., 2004. "ARCH–GARCH approaches to modeling high-frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 216-220.
  • Handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:216-220
    DOI: 10.1016/j.physa.2004.06.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104009380
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.06.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    2. Stanley, H.E. & Buldyrev, S.V. & Goldberger, A.L. & Goldberger, Z.D. & Havlin, S. & Mantegna, R.N. & Ossadnik, S.M. & Peng, C.-K. & Simons, M., 1994. "Statistical mechanics in biology: how ubiquitous are long-range correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 205(1), pages 214-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    2. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    3. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    4. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    5. Yoon, Seong-Min & Kang, Sang Hoon, 2009. "Weather effects on returns: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 682-690.
    6. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    7. Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
    8. Lahmiri, Salim, 2017. "Asymmetric and persistent responses in price volatility of fertilizers through stable and unstable periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 405-414.
    9. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    10. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
    11. Gong, Xiaoli & Zhuang, Xintian, 2016. "Option pricing for stochastic volatility model with infinite activity Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 1-10.
    12. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2013. "Intraday volatility spillovers between spot and futures indices: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1795-1802.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zebende, G.F. & Pereira, M.G. & Nogueira Jr., E. & Moret, M.A., 2005. "Universal persistence in astrophysical sources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 452-458.
    2. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    3. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    4. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.
    5. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    6. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    7. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    8. Demidov, Denis & Frahm, Klaus M. & Shepelyansky, Dima L., 2020. "What is the central bank of Wikipedia?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    9. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    10. Joachim Kaldasch, 2015. "Dynamic Model of the Price Dispersion of Homogeneous Goods," Papers 1509.01216, arXiv.org.
    11. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    12. Alvarez-Ramirez, Jose & Espinosa-Paredes, Gilberto & Vazquez, Alejandro, 2005. "Detrended fluctuation analysis of the neutronic power from a nuclear reactor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 227-240.
    13. Jung, Woo-Sung & Kwon, Okyu & Wang, Fengzhong & Kaizoji, Taisei & Moon, Hie-Tae & Stanley, H. Eugene, 2008. "Group dynamics of the Japanese market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 537-542.
    14. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    15. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    16. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    17. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    18. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    19. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    20. Tetsuya Takaishi, 2005. "Simulations Of Financial Markets In A Potts-Like Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1311-1317.

    More about this item

    Keywords

    Stochastic processes; Random walks;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:216-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.