IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v334y2004i3p531-557.html
   My bibliography  Save this article

Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

Author

Listed:
  • Baaquie, Belal E.
  • Corianò, Claudio
  • Srikant, Marakani

Abstract

The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

Suggested Citation

  • Baaquie, Belal E. & Corianò, Claudio & Srikant, Marakani, 2004. "Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(3), pages 531-557.
  • Handle: RePEc:eee:phsmap:v:334:y:2004:i:3:p:531-557
    DOI: 10.1016/j.physa.2003.10.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103009841
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.10.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linetsky, Vadim, 1998. "The Path Integral Approach to Financial Modeling and Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 129-163, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    2. Chowdhury, Reaz & Mahdy, M.R.C. & Alam, Tanisha Nourin & Al Quaderi, Golam Dastegir & Arifur Rahman, M., 2020. "Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    3. Ivan Arraut & Alan Au & Alan Ching-biu Tse & Joao Alexandre Lobo Marques, 2019. "On the probability flow in the Stock market I: The Black-Scholes case," Papers 2001.00516, arXiv.org.
    4. Shi, Leilei, 2006. "Does security transaction volume–price behavior resemble a probability wave?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 419-436.
    5. Haoran Zheng & Jing Bai, 2024. "Quantum Leap: A Price Leap Mechanism in Financial Markets," Mathematics, MDPI, vol. 12(2), pages 1-27, January.
    6. Bueno-Guerrero, Alberto, 2022. "A Quantum Mechanics for interest rate derivatives markets," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Reaz Chowdhury & M. R. C. Mahdy & Tanisha Nourin Alam & Golam Dastegir Al Quaderi, 2018. "Predicting the Stock Price of Frontier Markets Using Modified Black-Scholes Option Pricing Model and Machine Learning," Papers 1812.10619, arXiv.org.
    8. Ivan Arraut & Alan Au & Alan Ching-biu Tse, 2020. "On the multiplicity of the martingale condition: Spontaneous symmetry breaking in Quantum Finance," Papers 2004.11270, arXiv.org.
    9. Ivan Arraut & João Alexandre Lobo Marques & Sergio Gomes, 2021. "The Probability Flow in the Stock Market and Spontaneous Symmetry Breaking in Quantum Finance," Mathematics, MDPI, vol. 9(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    2. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    3. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    4. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
    5. Zhang, Kun & Liu, Jing & Wang, Erkang & Wang, Jin, 2017. "Quantifying risks with exact analytical solutions of derivative pricing distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 757-766.
    6. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    7. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of Wasabi option in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 1-10.
    8. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    9. C. Atkinson & S. Kazantzaki, 2009. "Double knock-out Asian barrier options which widen or contract as they approach maturity," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 329-340.
    10. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    11. Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
    12. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
    13. Antonie Kotzé & Rudolf Oosthuizen & Edson Pindza, 2015. "Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options," JRFM, MDPI, vol. 8(1), pages 1-40, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:334:y:2004:i:3:p:531-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.