IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v324y2003i1p272-277.html
   My bibliography  Save this article

Langevin modelling of high-frequency Hang-Seng index data

Author

Listed:
  • Tang, Lei-Han

Abstract

Accurate statistical characterization of financial time series, such as compound stock indices, foreign currency exchange rates, etc., is fundamental to investment risk management, pricing of derivative products and financial decision making. Traditionally, such data were analyzed and modeled from a purely statistics point of view, with little concern on the specifics of financial markets. Increasingly, however, attention has been paid to the underlying economic forces and the collective behavior of investors. Here we summarize a novel approach to the statistical modeling of a major stock index (the Hang Seng index). Based on mathematical results previously derived in the fluid turbulence literature, we show that a Langevin equation with a variable noise amplitude correctly reproduces the ubiquitous fat tails in the probability distribution of intra-day price moves. The form of the Langevin equation suggests that, despite the extremely complex nature of financial concerns and investment strategies at the individual's level, there exist simple universal rules governing the high-frequency price move in a stock market.

Suggested Citation

  • Tang, Lei-Han, 2003. "Langevin modelling of high-frequency Hang-Seng index data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 272-277.
  • Handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:272-277
    DOI: 10.1016/S0378-4371(03)00034-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103000347
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(03)00034-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Mei-Ling & Chen, Zhang-HangJian & Li, Sai-Ping & Xiong, Xiong & Zhang, Wei & Yang, Ming-Yuan & Ren, Fei, 2022. "New volatility evolution model after extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Mei-Ling Cai & Zhang-HangJian Chen & Sai-Ping Li & Xiong Xiong & Wei Zhang & Ming-Yuan Yang & Fei Ren, 2022. "New volatility evolution model after extreme events," Papers 2201.03213, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. J. James Reade & Ulrich Volz, 2009. "Too Much to Lose, or More to Gain? Should Sweden Join the Euro?," Economics Series Working Papers 442, University of Oxford, Department of Economics.
    4. Frank J. Fabozzi & Radu Tunaru & Tony Wu, 2004. "Modeling Volatility for the Chinese Equity Markets," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 79-92, May.
    5. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    6. Martha Misas & Maria Teresa Ramirez, 2004. "Long-run income and price elasticities of demand for Colombian nontraditional exports: a multivariate cointegration framework," Applied Economics, Taylor & Francis Journals, vol. 36(9), pages 931-938.
    7. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    8. Yiwen Cui & Lei Li & Zijie Tang, 2021. "Risk Analysis of China Stock Market During Economic Downturns–Based on GARCH-VaR and Wavelet Transformation Approaches," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 11(4), pages 322-336, April.
    9. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    10. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    11. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    12. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    13. Lucena, Pierre & Figueiredo, Antonio Carlos & Lachtermacher, Gerson, 2008. "Critérios de formação de carteiras de ativos através de hierarchical clusters [Criteria of portfolio formation of stocks through hierarchical clusters]," MPRA Paper 38105, University Library of Munich, Germany.
    14. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    15. Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
    16. Martha Misas A. & María Teresa Ramírez G. & Luisa Fernanda Silva E., 2001. "Exportaciones no tradicionales en Colombia y sus determinantes," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 19(39), pages 73-114, June.
    17. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    18. Zhang, Jie & Chen, Zhiguo & Altuntaş, Mehmet, 2022. "Tracing volatility in natural resources, green finance and investment in energy resources: Fresh evidence from China," Resources Policy, Elsevier, vol. 79(C).
    19. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    20. Lucena, Pierre & Figueiredo, Antonio Carlos, 2008. "Anomalias no Mercado no Mercado de Ações Brasileiro: uma Modificação do Modelo de Fama de Fama e French [Anomalies on the Brazilian Stock Market: a Modification of the Fama and French Model]," MPRA Paper 38127, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:272-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.