IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v301y2001i1p85-96.html
   My bibliography  Save this article

Self-organized criticality in electrical treeing

Author

Listed:
  • Noskov, M.D.
  • Malinovski, A.S.
  • Sack, M.
  • Schwab, A.J.

Abstract

Self-organized criticality aspects of electrical treeing in solid dielectric under ac voltage are considered. The sandpile model of self-organized criticality is modified to describe partial discharge activity from electrical treeing. A comparison of avalanche statistics simulated by the modified sandpile model and partial discharge data obtained in experiments confirms the existence of self-organized criticality in electrical treeing.

Suggested Citation

  • Noskov, M.D. & Malinovski, A.S. & Sack, M. & Schwab, A.J., 2001. "Self-organized criticality in electrical treeing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 85-96.
  • Handle: RePEc:eee:phsmap:v:301:y:2001:i:1:p:85-96
    DOI: 10.1016/S0378-4371(01)00371-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101003715
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00371-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turcotte, D.L. & Malamud, B.D. & Morein, G. & Newman, W.I., 1999. "An inverse-cascade model for self-organized critical behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(3), pages 629-643.
    2. Bruce Malamud & Donald Turcotte, 1999. "Self-Organized Criticality Applied to Natural Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 93-116, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro, John C. & Diehl, Brett & Marcellin, Richard F. & Vaughn, Daniel J., 2018. "Workplace accidents and self-organized criticality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 284-289.
    2. Wang, Jian & Song, Weiguo & Zheng, Hongyang & Telesca, Luciano, 2010. "Temporal scaling behavior of human-caused fires and their connection to relative humidity of the atmosphere," Ecological Modelling, Elsevier, vol. 221(1), pages 85-89.
    3. Turcotte, Donald L & Malamud, Bruce D, 2004. "Landslides, forest fires, and earthquakes: examples of self-organized critical behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 580-589.
    4. Torres-Rojo, Juan Manuel & Bahena-González, Roberto, 2018. "Scale invariant behavior of cropping area losses," Agricultural Systems, Elsevier, vol. 165(C), pages 33-43.
    5. Nurulkamal Masseran, 2022. "Power-law behaviors of the severity levels of unhealthy air pollution events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1749-1766, June.
    6. I. Georgoudas & G. Sirakoulis & E. Scordilis & I. Andreadis, 2009. "On-chip earthquake simulation model using potentials," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 519-537, September.
    7. Karin L. Riley & Matthew P. Thompson & Joe H. Scott & Julie W. Gilbertson-Day, 2018. "A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies," Resources, MDPI, vol. 7(1), pages 1-26, January.
    8. Zaliapin, Ilia & Kovchegov, Yevgeniy, 2012. "Tokunaga and Horton self-similarity for level set trees of Markov chains," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 358-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:301:y:2001:i:1:p:85-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.