IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v256y1998i1p251-283.html
   My bibliography  Save this article

Large deviations and portfolio optimization

Author

Listed:
  • Sornette, Didier

Abstract

Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean–variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean–variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

Suggested Citation

  • Sornette, Didier, 1998. "Large deviations and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(1), pages 251-283.
  • Handle: RePEc:eee:phsmap:v:256:y:1998:i:1:p:251-283
    DOI: 10.1016/S0378-4371(98)00114-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437198001149
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(98)00114-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Marsili, Matteo & Maslov, Sergei & Zhang, Yi-Cheng, 1998. "Dynamical optimization theory of a diversified portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 253(1), pages 403-418.
    3. Sergei Maslov & Yi-Cheng Zhang, 1998. "Optimal Investment Strategy for Risky Assets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 377-387.
    4. Matteo Marsili & Sergei Maslov & Yi-Cheng Zhang, 1998. "Dynamical Optimization Theory of a Diversified Portfolio," Papers cond-mat/9801239, arXiv.org, revised Jan 1998.
    5. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    6. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    7. Sergei Maslov & Yi-Cheng Zhang, 1998. "Optimal Investment Strategy for Risky Assets," Papers cond-mat/9801240, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. V. Andersen & D. Sornette, 1999. "Have your cake and eat it too: increasing returns while lowering large risks!," Papers cond-mat/9907217, arXiv.org.
    2. Youngha Cho & Soosung Hwang & Steve Satchell, 2012. "The Optimal Mortgage Loan Portfolio in UK Regional Residential Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 45(3), pages 645-677, October.
    3. Stutzer, Michael, 2020. "Persistence of averages in financial Markov Switching models: A large deviations approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Y. Malevergne & D. Sornette, 2001. "General framework for a portfolio theory with non-Gaussian risks and non-linear correlations," Papers cond-mat/0103020, arXiv.org.
    5. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    6. D. Sornette & P. Simonetti & J.V. Andersen, 1999. ""Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions," Finance 9902004, University Library of Munich, Germany.
    7. Cornelis A Los, 2005. "Why VaR FailsLong Memory and Extreme Events in Financial Markets," The IUP Journal of Financial Economics, IUP Publications, vol. 0(3), pages 19-36, September.
    8. Stutzer, Michael, 2013. "Optimal hedging via large deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3177-3182.
    9. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    10. Richard B. Sowers, 2009. "Exact Pricing Asymptotics of Investment-Grade Tranches of Synthetic CDO's Part I: A Large Homogeneous Pool," Papers 0903.4475, arXiv.org.
    11. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Laureti & Matus Medo & Yi-Cheng Zhang, 2010. "Analysis of Kelly-optimal portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 689-697.
    2. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    3. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    4. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    5. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    6. Fatma Lajeri-Chaherli, 2016. "On The Concavity And Quasiconcavity Properties Of ( Σ , Μ ) Utility Functions," Bulletin of Economic Research, Wiley Blackwell, vol. 68(3), pages 287-296, April.
    7. Brauneis, Alexander & Mestel, Roland, 2019. "Cryptocurrency-portfolios in a mean-variance framework," Finance Research Letters, Elsevier, vol. 28(C), pages 259-264.
    8. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    9. Eric Jondeau & Michael Rockinger, 2005. "Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?," FAME Research Paper Series rp132, International Center for Financial Asset Management and Engineering.
    10. Huisman, Ronald & Mahieu, Ronald & Schlichter, Felix, 2009. "Electricity portfolio management: Optimal peak/off-peak allocations," Energy Economics, Elsevier, vol. 31(1), pages 169-174, January.
    11. George Samartzis & Nikitas Pittis, 2022. "On The Equivalence Of The Mean Variance Criterion And Stochastic Dominance Criteria," Papers 2211.01240, arXiv.org.
    12. Gourieroux, C. & Jouneau, F., 1999. "Econometrics of efficient fitted portfolios," Journal of Empirical Finance, Elsevier, vol. 6(1), pages 87-118, January.
    13. Subbiah, Mohan & Fabozzi, Frank J., 2016. "Hedge fund allocation: Evaluating parametric and nonparametric forecasts using alternative portfolio construction techniques," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 189-201.
    14. Naqvi, Bushra & Rizvi, Syed Kumail Abbas & Hasnaoui, Amir & Shao, Xuefeng, 2022. "Going beyond sustainability: The diversification benefits of green energy financial products," Energy Economics, Elsevier, vol. 111(C).
    15. Alexander Braun & Hato Schmeiser & Florian Schreiber, 2017. "Portfolio Optimization Under Solvency II: Implicit Constraints Imposed by the Market Risk Standard Formula," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 177-207, March.
    16. António Alberto Santos & Ana Margarida Monteiro & Rui Pascoal, 2014. "Portfolio Choice under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison," GEMF Working Papers 2014-25, GEMF, Faculty of Economics, University of Coimbra.
    17. Andre, Francisco J. & Riesgo, Laura, 2007. "A non-interactive elicitation method for non-linear multiattribute utility functions: Theory and application to agricultural economics," European Journal of Operational Research, Elsevier, vol. 181(2), pages 793-807, September.
    18. Johnson, Michael & O'Connor, Ian & Malcolm, Bill, 2006. "Agribusiness Assets in Investment Portfolios," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139794, Australian Agricultural and Resource Economics Society.
    19. Kassimatis, Konstantinos, 2021. "Mean-variance versus utility maximization revisited: The case of constant relative risk aversion," International Review of Financial Analysis, Elsevier, vol. 78(C).
    20. Andrea Morone, 2008. "Comparison of Mean-Variance Theory and Expected-Utility Theory through a Laboratory Experiment," Economics Bulletin, AccessEcon, vol. 3(40), pages 1-7.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:256:y:1998:i:1:p:251-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.