IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v238y1997i1p225-244.html
   My bibliography  Save this article

Accumulation points in nonlinear parameter lattices

Author

Listed:
  • Beims, Marcus W.
  • Gallas, Jason A.C.

Abstract

In 1963 Myrberg determined a period-doubling cascade of the quadratic map to accumulate at 1.401155189… As found later, the geometric way with which model parameters approach this value has universal behavior and several characteristic exponents associated with it. In the present paper we discuss the existence of an infinite number of points characterized by the simultaneous accumulation of two or more bifurcation cascades. We present an accurate numerical determination of the vertices of a doubly infinite nonlinear lattice which lead to a point of double accumulation. In addition, we discuss the number-theoretic nature of irrationalities characterizing vertices. Novel classes of universality with characteristic exponents are conjectured to exist near points of multiple accumulations.

Suggested Citation

  • Beims, Marcus W. & Gallas, Jason A.C., 1997. "Accumulation points in nonlinear parameter lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 225-244.
  • Handle: RePEc:eee:phsmap:v:238:y:1997:i:1:p:225-244
    DOI: 10.1016/S0378-4371(96)00451-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437196004517
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(96)00451-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallas, Jason A.C., 1995. "Units: Remarkable points in dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 222(1), pages 125-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:238:y:1997:i:1:p:225-244. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.