IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v164y1990i3p730-750.html
   My bibliography  Save this article

Correlated-effective-field treatment of spin-one ising models

Author

Listed:
  • Kaneyoshi, T.

Abstract

A new version of correlated effective-field theory is applied to a study of the spin-one Ising models, namely the Blume-Capel and Blume-Emery-Griffiths modesl, using the Honmura-Kaneyoshi differential operator technique. This method is illustrated in a honeycomb lattice by investigating the phase diagram, the magnetization, the correlated effective-field parameter and the short-range order parameter. The theory correctly accounts for many physical quantities and leads to results that are quite superior, and in some aspects different, to those of the previous works.

Suggested Citation

  • Kaneyoshi, T., 1990. "Correlated-effective-field treatment of spin-one ising models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 164(3), pages 730-750.
  • Handle: RePEc:eee:phsmap:v:164:y:1990:i:3:p:730-750
    DOI: 10.1016/0378-4371(90)90232-H
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719090232H
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(90)90232-H?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Alcantara Bonfim, O.F., 1985. "Mean field renormalization group analysis of the Blume-Capel model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 130(1), pages 367-373.
    2. Siqueira, A.F. & Fittipaldi, I.P., 1986. "New effective-field theory for the Blume-Capel model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(3), pages 592-611.
    3. Kaneyoshi, T. & Sarmento, E.F., 1988. "The application of the differential operator method to the Blume-Emery-Griffiths model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 152(3), pages 343-358.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha-Neto, Mário J.G. & Camelo-Neto, G. & Nogueira Jr., E. & Coutinho, S., 2018. "The Blume–Capel model on hierarchical lattices: Exact local properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 559-573.
    2. Kaneyoshi, T. & Sarmento, E.F., 1988. "The application of the differential operator method to the Blume-Emery-Griffiths model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 152(3), pages 343-358.
    3. Kaneyoshi, T., 1990. "Surface tricritical behavior of a semi-infinite Ising model with a spin-one free surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 163(2), pages 533-544.
    4. Idogaki, Toshihiro & Uryû, Norikiyo, 1992. "A new effective field theory for the anisotropic Heisenberg ferromagnet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 181(1), pages 173-186.
    5. Kaneyoshi, T., 1989. "Magnetic properties of the mixed spin system with a random crystal field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 155(3), pages 460-474.
    6. Jurčišinová, E. & Jurčišin, M., 2016. "Spin-1 Ising model on tetrahedron recursive lattices: Exact results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 554-568.
    7. Schmidt, M. & Dias, P.F., 2021. "Correlated cluster mean-field theory for Ising-like spin systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Chen, Shyh-Tzer, 1996. "Mean-field renormalization group for the q-state clock spin-glass model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 229(2), pages 181-187.
    9. Kaneyoshi, T., 1994. "Tricritical behavior of a mixed spin-12 and spin-2 Ising system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 205(4), pages 677-686.
    10. Jurčišinová, E. & Jurčišin, M., 2016. "Exact results for the spin-1 Ising model on pure “square” Husimi lattices: Critical temperatures and spontaneous magnetization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 641-653.
    11. Verona de Resende, H.F. & SáBarreto, F.C. & Plascak, J.A., 1988. "Renormalization group treatment of the mixed-spin system in d-dimensional lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 149(3), pages 606-612.
    12. Jurčišin, M. & Bobák, A. & Jaščur, M., 1996. "Two-spin cluster theory for the Blume-Capel model with arbitrary spin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(3), pages 684-696.
    13. Kaneyoshi, T. & Tucker, J.W. & Jaščur, M., 1992. "Differential operator technique for higher spin problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 186(3), pages 495-512.
    14. Wang, Xuan-Zhang & Zhao, Yan, 1993. "Phase diagrams of transverse Ising film," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 193(1), pages 133-140.
    15. Kaneyoshi, T., 1992. "A general theory of spin-one Ising models in the correlated effective-field approximation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 182(3), pages 436-454.
    16. Kaneyoshi, T., 1991. "Surface phase diagrams of a spin-one monolayer on a semi-infinite spin-12 Ising ferromagnet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(2), pages 389-400.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:164:y:1990:i:3:p:730-750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.