IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v84y2024ics0927538x24000325.html
   My bibliography  Save this article

Trading volume, anomaly returns and noise trader risk in China

Author

Listed:
  • Han, Chunmao
  • Zhang, Wei

Abstract

We document trading volume's amplification effect on trading friction anomalies in the Chinese market. Unlike the uncertain role in different situations in the U.S. market, trading volume in the Chinese market represents noise trading activity/sentiment, rather than efficiency. At the market level, anomaly returns are higher during periods of higher trading activity; at the individual stock level, anomalies constructed by high-turnover stocks have higher returns. We use noise trader risk to explain the contradiction whereby trading volume does not promote efficiency in the retail investor-dominated Chinese market. Further, we propose a volume-weighted portfolio to utilize trading volume's amplification effect and liquidity property. It produces high returns with low transaction costs.

Suggested Citation

  • Han, Chunmao & Zhang, Wei, 2024. "Trading volume, anomaly returns and noise trader risk in China," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:pacfin:v:84:y:2024:i:c:s0927538x24000325
    DOI: 10.1016/j.pacfin.2024.102281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X24000325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2024.102281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keim, Donald B & Stambaugh, Robert F, 1984. "A Further Investigation of the Weekend Effect in Stock Returns," Journal of Finance, American Finance Association, vol. 39(3), pages 819-835, July.
    2. Blume, Marshall E. & Stambaugh, Robert F., 1983. "Biases in computed returns : An application to the size effect," Journal of Financial Economics, Elsevier, vol. 12(3), pages 387-404, November.
    3. Baker, Malcolm & Stein, Jeremy C., 2004. "Market liquidity as a sentiment indicator," Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
    4. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    5. Han, Chunmao & Shi, Yongdong, 2022. "Chinese stock anomalies and investor sentiment," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    6. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    7. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    8. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    9. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    10. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    11. Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2019. "Size and value in China," Journal of Financial Economics, Elsevier, vol. 134(1), pages 48-69.
    12. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    13. Chordia, Tarun & Subrahmanyam, Avanidhar & Anshuman, V. Ravi, 2001. "Trading activity and expected stock returns," Journal of Financial Economics, Elsevier, vol. 59(1), pages 3-32, January.
    14. Duan, Ying & Hu, Gang & McLean, R. David, 2010. "Costly arbitrage and idiosyncratic risk: Evidence from short sellers," Journal of Financial Intermediation, Elsevier, vol. 19(4), pages 564-579, October.
    15. Chordia, Tarun & Subrahmanyam, Avanidhar & Tong, Qing, 2014. "Have capital market anomalies attenuated in the recent era of high liquidity and trading activity?," Journal of Accounting and Economics, Elsevier, vol. 58(1), pages 41-58.
    16. Han, Yufeng & Huang, Dashan & Huang, Dayong & Zhou, Guofu, 2022. "Expected return, volume, and mispricing," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1295-1315.
    17. Jeffrey Pontiff, 1996. "Costly Arbitrage: Evidence from Closed-End Funds," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(4), pages 1135-1151.
    18. Pontiff, Jeffrey, 2006. "Costly arbitrage and the myth of idiosyncratic risk," Journal of Accounting and Economics, Elsevier, vol. 42(1-2), pages 35-52, October.
    19. Brennan, Michael J. & Chordia, Tarun & Subrahmanyam, Avanidhar, 1998. "Alternative factor specifications, security characteristics, and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 49(3), pages 345-373, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Kaibin & Liang, Yuheng & Zhu, Mengnan, 2024. "Social forecasting: Online social opinion and the cross-section of stock returns," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chunmao & Shi, Yongdong, 2022. "Chinese stock anomalies and investor sentiment," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    2. Jacobs, Heiko & Müller, Sebastian, 2020. "Anomalies across the globe: Once public, no longer existent?," Journal of Financial Economics, Elsevier, vol. 135(1), pages 213-230.
    3. David C. Ling & Andy Naranjo & Benjamin Scheick, 2014. "Investor Sentiment, Limits to Arbitrage and Private Market Returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(3), pages 531-577, September.
    4. Ang, Tze Chuan ‘Chewie’ & Lam, F.Y. Eric C. & Wei, K.C. John, 2020. "Mispricing firm-level productivity," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 139-163.
    5. Long, Huaigang & Chiah, Mardy & Zaremba, Adam & Umar, Zaghum, 2024. "Changes in shares outstanding and country stock returns around the world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    6. Nguyen, Hung T. & Pham, Mia Hang, 2021. "Air pollution and behavioral biases: Evidence from stock market anomalies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    7. Xiao Han & Nikolaos Sakkas & Jo Danbolt & Arman Eshraghi, 2022. "Persistence of investor sentiment and market mispricing," The Financial Review, Eastern Finance Association, vol. 57(3), pages 617-640, August.
    8. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    9. Hanauer, Matthias X. & Lesnevski, Pavel & Smajlbegovic, Esad, 2023. "Surprise in short interest," Journal of Financial Markets, Elsevier, vol. 65(C).
    10. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    11. Zhu, Zhaobo & Sun, Licheng & Yung, Kenneth, 2020. "Fundamental strength strategy: The role of investor sentiment versus limits to arbitrage," International Review of Financial Analysis, Elsevier, vol. 71(C).
    12. Fang, Yi & Niu, Hui & Tong, Xiangda, 2022. "Crash probability anomaly in the Chinese stock market," Finance Research Letters, Elsevier, vol. 44(C).
    13. Chuan ‘Chewie’ Ang, Tze & Lam, F.Y. Eric C. & Ma, Tai & Wang, Shujing & Wei, K.C. John, 2019. "What is the real relationship between cash holdings and stock returns?," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 513-528.
    14. Robert F. Stambaugh & Yu Yuan, 2017. "Mispricing Factors," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1270-1315.
    15. Wu, Qinqin & Hao, Ying & Lu, Jing, 2017. "Investor sentiment, idiosyncratic risk, and mispricing of American Depository Receipt," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 1-14.
    16. Kumari, Jyoti, 2019. "Investor sentiment and stock market liquidity: Evidence from an emerging economy," Journal of Behavioral and Experimental Finance, Elsevier, vol. 23(C), pages 166-180.
    17. Jacobs, Heiko, 2016. "Market maturity and mispricing," Journal of Financial Economics, Elsevier, vol. 122(2), pages 270-287.
    18. Liu, Jun & Wu, Kai & Zhou, Ming, 2023. "News tone, investor sentiment, and liquidity premium," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 167-181.
    19. Li, Yuan & Ran, Jimmy, 2020. "Investor Sentiment and Stock Price Premium Validation with Siamese Twins from China," Journal of Multinational Financial Management, Elsevier, vol. 57.
    20. Cakici, Nusret & Zaremba, Adam, 2023. "Recency bias and the cross-section of international stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).

    More about this item

    Keywords

    Trading volume; Anomalies; Portfolios; Noise trader risk; Volume-weighted; Mispricing; China;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:84:y:2024:i:c:s0927538x24000325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.