IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v62y2020ics0927538x20301244.html
   My bibliography  Save this article

Does average skewness matter? Evidence from the Taiwanese stock market

Author

Listed:
  • Li, Mingyi
  • Onishchenko, Olena
  • Zhao, Jing

Abstract

This paper replicates Jondeau et al. (2019) on the topic of average skewness which is the average of monthly skewness values across firms. First, we consistently reproduce their main results and validate that average skewness negatively predicts the next-month U.S. stock market returns. Second, we test the prediction on the Taiwanese stock market where retail investors dominate the trading volume and find that average skewness fails to predict the next-month market returns. Third, we extend our analysis on the Taiwanese stock market to allow for delayed effects and adopt the maximum daily return over the month (MAX) as an alternative measure of skewness. We find that the value-weighted average skewness and the average MAX are able to predict the second-next-month market returns in Taiwan.

Suggested Citation

  • Li, Mingyi & Onishchenko, Olena & Zhao, Jing, 2020. "Does average skewness matter? Evidence from the Taiwanese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
  • Handle: RePEc:eee:pacfin:v:62:y:2020:i:c:s0927538x20301244
    DOI: 10.1016/j.pacfin.2020.101382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X20301244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2020.101382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019. "Average skewness matters," Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
    2. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    3. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2016. "Why Invest in Emerging Markets? The Role of Conditional Return Asymmetry," Journal of Finance, American Finance Association, vol. 71(5), pages 2145-2192, October.
    4. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    5. Huang, Shiyang & Huang, Yulin & Lin, Tse-Chun, 2019. "Attention allocation and return co-movement: Evidence from repeated natural experiments," Journal of Financial Economics, Elsevier, vol. 132(2), pages 369-383.
    6. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    7. John M. Griffin & Patrick J. Kelly & Federico Nardari, 2010. "Do Market Efficiency Measures Yield Correct Inferences? A Comparison of Developed and Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3225-3277, August.
    8. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    9. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    10. Brad M. Barber & Yi-Tsung Lee & Yu-Jane Liu & Terrance Odean, 2009. "Just How Much Do Individual Investors Lose by Trading?," The Review of Financial Studies, Society for Financial Studies, vol. 22(2), pages 609-632, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Chia-Fen & Chang, Jung-Hsien & Tsai, Feng-Tse, 2021. "Lottery preferences and retail short selling," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    2. Annaert, Jan & De Ceuster, Marc & Van Cappellen, Jef, 2023. "Can average skewness really predict financial returns? The euro area case," Finance Research Letters, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsai, Chia-Fen & Chang, Jung-Hsien & Tsai, Feng-Tse, 2021. "Lottery preferences and retail short selling," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    2. Annaert, Jan & De Ceuster, Marc & Van Cappellen, Jef, 2023. "Can average skewness really predict financial returns? The euro area case," Finance Research Letters, Elsevier, vol. 52(C).
    3. Thanh Huong Nguyen, 2019. "Information and Noise in Stock Markets: Evidence on the Determinants and Effects Using New Empirical Measures," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 7-2019, January-A.
    4. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    5. Langlois, Hugues, 2020. "Measuring skewness premia," Journal of Financial Economics, Elsevier, vol. 135(2), pages 399-424.
    6. Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019. "Average skewness matters," Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
    7. Zhao, Xiaojuan & Wang, Ye & Liu, Weiyi, 2024. "Someone like you: Lottery-like preference and the cross-section of expected returns in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    8. Eric Jondeau & Xuewu Wang & Zhipeng Yan & Qunzi Zhang, 2020. "Skewness and index futures return," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1648-1664, November.
    9. Berggrun, Luis & Cardona, Emilio & Lizarzaburu, Edmundo, 2019. "Extreme daily returns and the cross-section of expected returns: Evidence from Brazil," Journal of Business Research, Elsevier, vol. 102(C), pages 201-211.
    10. Benjamin M Blau & Ryan J Whitby, 2017. "Range-based volatility, expected stock returns, and the low volatility anomaly," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
    11. Annaert, Jan & De Ceuster, Marc & Verstegen, Kurt, 2013. "Are extreme returns priced in the stock market? European evidence," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3401-3411.
    12. Lin, Mei-Chen, 2023. "Analyst coverage and the idiosyncratic skewness effect in the Taiwan stock market," International Review of Financial Analysis, Elsevier, vol. 85(C).
    13. Stein, Roberto, 2024. "More than meets the eye: On the relationship between skewness and expected returns," Finance Research Letters, Elsevier, vol. 60(C).
    14. Escobar, Laura & Pedraza, Alvaro, 2023. "Active trading and (poor) performance: The social transmission channel," Journal of Financial Economics, Elsevier, vol. 150(1), pages 139-165.
    15. Gou Xiaoju & Bie Limei, 2016. "Research on Investment Preference and the MAX Effect in Chinese Stock Market," Journal of Systems Science and Information, De Gruyter, vol. 4(6), pages 519-533, December.
    16. Nilesh Gupta & Joshy Jacob, 2021. "The Interplay Between Sentiment and MAX: Evidence from an Emerging Market," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 20(2), pages 192-217, August.
    17. Lin, Mei-Chen & Lin, Yu-Ling, 2021. "Idiosyncratic skewness and cross-section of stock returns: Evidence from Taiwan," International Review of Financial Analysis, Elsevier, vol. 77(C).
    18. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    19. Nartea, Gilbert V. & Kong, Dongmin & Wu, Ji, 2017. "Do extreme returns matter in emerging markets? Evidence from the Chinese stock market," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 189-197.
    20. Zhu, Zhaobo & Harrison, DavidM. & Seiler, MichaelJ., 2020. "Preference for lottery features in real estate investment trusts," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 599-613.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:62:y:2020:i:c:s0927538x20301244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.