IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188517.html
   My bibliography  Save this article

Range-based volatility, expected stock returns, and the low volatility anomaly

Author

Listed:
  • Benjamin M Blau
  • Ryan J Whitby

Abstract

One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics.

Suggested Citation

  • Benjamin M Blau & Ryan J Whitby, 2017. "Range-based volatility, expected stock returns, and the low volatility anomaly," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0188517
    DOI: 10.1371/journal.pone.0188517
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188517
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188517&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico Botta & Helen Susannah Moat & H Eugene Stanley & Tobias Preis, 2015. "Quantifying Stock Return Distributions in Financial Markets," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-10, September.
    2. Hui Guo & Robert Savickas, 2008. "Average Idiosyncratic Volatility in G7 Countries," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1259-1296, May.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    5. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    6. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    7. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    8. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    9. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    10. Brian Boyer & Todd Mitton & Keith Vorkink, 2010. "Expected Idiosyncratic Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 169-202, January.
    11. Merton, Robert C, 1987. "A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    12. repec:bla:jfinan:v:58:y:2003:i:3:p:975-1008 is not listed on IDEAS
    13. Amit Goyal & Pedro Santa‐Clara, 2003. "Idiosyncratic Risk Matters!," Journal of Finance, American Finance Association, vol. 58(3), pages 975-1007, June.
    14. Yang-Yu Liu & Jose C Nacher & Tomoshiro Ochiai & Mauro Martino & Yaniv Altshuler, 2014. "Prospect Theory for Online Financial Trading," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    15. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    16. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    17. Brian H. Boyer & Keith Vorkink, 2014. "Stock Options as Lotteries," Journal of Finance, American Finance Association, vol. 69(4), pages 1485-1527, August.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    20. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    21. Yang-Yu Liu & Jose C. Nacher & Tomoshiro Ochiai & Mauro Martino & Yaniv Altshuler, 2014. "Prospect Theory for Online Financial Trading," Papers 1402.6393, arXiv.org, revised Mar 2014.
    22. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    23. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    24. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    25. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    26. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    27. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    28. Fu, Fangjian, 2009. "Idiosyncratic risk and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 91(1), pages 24-37, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François-Éric Racicot & William F Rentz & David Tessier & Raymond Théoret, 2019. "The conditional Fama-French model and endogenous illiquidity: A robust instrumental variables test," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
    2. Zaremba, Adam, 2019. "Price range and the cross-section of expected country and industry returns," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 174-189.
    3. Abraham Oketooyin GBADEBO & Yusuf Olatunji OYEDEKO, 2022. "Effect Of Liquidity Risk On Low Volatility Anomaly In Nigerian Stock Market," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 7(3), pages 25-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, June.
    2. Paul Schneider & Christian Wagner & Josef Zechner, 2020. "Low‐Risk Anomalies?," Journal of Finance, American Finance Association, vol. 75(5), pages 2673-2718, October.
    3. Berggrun, Luis & Cardona, Emilio & Lizarzaburu, Edmundo, 2019. "Extreme daily returns and the cross-section of expected returns: Evidence from Brazil," Journal of Business Research, Elsevier, vol. 102(C), pages 201-211.
    4. Aboulamer, Anas & Kryzanowski, Lawrence, 2016. "Are idiosyncratic volatility and MAX priced in the Canadian market?," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 20-36.
    5. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    6. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    7. Wang, Huijun & Yan, Jinghua & Yu, Jianfeng, 2017. "Reference-dependent preferences and the risk–return trade-off," Journal of Financial Economics, Elsevier, vol. 123(2), pages 395-414.
    8. Annaert, Jan & De Ceuster, Marc & Verstegen, Kurt, 2013. "Are extreme returns priced in the stock market? European evidence," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3401-3411.
    9. Tariq Aziz & Valeed Ahmad Ansari, 2017. "Idiosyncratic volatility and stock returns: Indian evidence," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1420998-142, January.
    10. Zhong, Angel & Gray, Philip, 2016. "The MAX effect: An exploration of risk and mispricing explanations," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 76-90.
    11. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    12. Shuonan Yuan & Marc Oliver Rieger & Nilüfer Caliskan, 2020. "Maxing out: the puzzling influence of past maximum returns on future asset prices in a cross-country analysis," Management Review Quarterly, Springer, vol. 70(4), pages 567-589, November.
    13. Andreas Oehler & Julian Schneider, 2022. "Gambling with lottery stocks?," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 477-503, October.
    14. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    15. Czapkiewicz, Anna & Wójtowicz, Tomasz & Zaremba, Adam, 2023. "Idiosyncratic risk and cross-section of stock returns in emerging European markets," Economic Modelling, Elsevier, vol. 124(C).
    16. Ayadi, Mohamed A. & Cao, Xu & Lazrak, Skander & Wang, Yan, 2019. "Do idiosyncratic skewness and kurtosis really matter?," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    17. Son, Nguyen Truong & Nguyen, Nhat Minh, 2019. "Prospect theory value and idiosyncratic volatility: Evidence from the Korean stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 21(C), pages 113-122.
    18. Kevin Aretz & Ming-Tsung Lin & Ser-Huang Poon, 2023. "Moneyness, Underlying Asset Volatility, and the Cross-Section of Option Returns," Review of Finance, European Finance Association, vol. 27(1), pages 289-323.
    19. Wan, Xiaoyuan, 2018. "Is the idiosyncratic volatility anomaly driven by the MAX or MIN effect? Evidence from the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 1-15.
    20. Lin, Mei-Chen & Lin, Yu-Ling, 2021. "Idiosyncratic skewness and cross-section of stock returns: Evidence from Taiwan," International Review of Financial Analysis, Elsevier, vol. 77(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.