IDEAS home Printed from https://ideas.repec.org/a/sae/emffin/v20y2021i2p192-217.html
   My bibliography  Save this article

The Interplay Between Sentiment and MAX: Evidence from an Emerging Market

Author

Listed:
  • Nilesh Gupta
  • Joshy Jacob

Abstract

Investors with lottery preferences are known to concentrate on stocks with rare but extreme past returns. We investigate the extent to which lottery preference, measured by the MAX variable, varies with the market-wide irrational sentiment. We find that the high-MAX stocks have higher overpricing in a high-sentiment market and earn a lower alpha, compared to the low-sentiment market. Accordingly, the poor returns earned by a long-short portfolio of stocks with extreme MAX values are primarily due to the overvaluation of the high MAX-portfolio during the high sentiment phase. The higher stock volatility in India also magnifies the lottery preference of investors. JEL Classification: G4, G12, G41, G11

Suggested Citation

  • Nilesh Gupta & Joshy Jacob, 2021. "The Interplay Between Sentiment and MAX: Evidence from an Emerging Market," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 20(2), pages 192-217, August.
  • Handle: RePEc:sae:emffin:v:20:y:2021:i:2:p:192-217
    DOI: 10.1177/0972652720969511
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972652720969511
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972652720969511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    2. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    3. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    4. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, February.
    5. Mark Mitchell & Todd Pulvino & Erik Stafford, 2002. "Limited Arbitrage in Equity Markets," Journal of Finance, American Finance Association, vol. 57(2), pages 551-584, April.
    6. Campbell, John Y & Ranish, Benjamin, 2014. "Getting Better or Feeling Better? How Equity Investors Respond to Investment Experience," CEPR Discussion Papers 9907, C.E.P.R. Discussion Papers.
    7. Balasubramaniam, Vimal & Anagol, Santosh, 2018. "Learning from Noise: Evidence from India’s IPO Lotteries," CEPR Discussion Papers 13314, C.E.P.R. Discussion Papers.
    8. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    9. Avramov, Doron & Chordia, Tarun & Jostova, Gergana & Philipov, Alexander, 2013. "Anomalies and financial distress," Journal of Financial Economics, Elsevier, vol. 108(1), pages 139-159.
    10. Brian Boyer & Todd Mitton & Keith Vorkink, 2010. "Expected Idiosyncratic Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 169-202, January.
    11. Ben-Rephael, Azi & Kandel, Shmuel & Wohl, Avi, 2012. "Measuring investor sentiment with mutual fund flows," Journal of Financial Economics, Elsevier, vol. 104(2), pages 363-382.
    12. Conrad, Jennifer & Kapadia, Nishad & Xing, Yuhang, 2014. "Death and jackpot: Why do individual investors hold overpriced stocks?," Journal of Financial Economics, Elsevier, vol. 113(3), pages 455-475.
    13. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    14. Neal, Robert & Wheatley, Simon M., 1998. "Do Measures of Investor Sentiment Predict Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(4), pages 523-547, December.
    15. Robert F. Stambaugh & Jianfeng Yu & Yu Yuan, 2015. "Arbitrage Asymmetry and the Idiosyncratic Volatility Puzzle," Journal of Finance, American Finance Association, vol. 70(5), pages 1903-1948, October.
    16. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    17. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    18. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    19. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    20. Owen A. Lamont & Jeremy C. Stein, 2004. "Aggregate Short Interest and Market Valuations," American Economic Review, American Economic Association, vol. 94(2), pages 29-32, May.
    21. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    22. Frazzini, Andrea & Lamont, Owen A., 2008. "Dumb money: Mutual fund flows and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 88(2), pages 299-322, May.
    23. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    24. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    25. Fabozzi, Frank J & Francis, Jack Clark, 1977. "Stability Tests for Alphas and Betas over Bull and Bear Market Conditions," Journal of Finance, American Finance Association, vol. 32(4), pages 1093-1099, September.
    26. Fong, Wai Mun & Toh, Benjamin, 2014. "Investor sentiment and the MAX effect," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 190-201.
    27. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    28. Wai Mun Fong, 2014. "The MAX Effect," Palgrave Macmillan Books, in: The Lottery Mindset: Investors, Gambling and the Stock Market, chapter 7, pages 138-155, Palgrave Macmillan.
    29. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Suk-Joon & Kim, Da-Hea, 2016. "Gambling preference and individual equity option returns," Journal of Financial Economics, Elsevier, vol. 122(1), pages 155-174.
    2. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    3. Zhong, Angel & Gray, Philip, 2016. "The MAX effect: An exploration of risk and mispricing explanations," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 76-90.
    4. Wan, Xiaoyuan, 2018. "Is the idiosyncratic volatility anomaly driven by the MAX or MIN effect? Evidence from the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 1-15.
    5. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, June.
    6. Zhao, Xiaojuan & Wang, Ye & Liu, Weiyi, 2024. "Someone like you: Lottery-like preference and the cross-section of expected returns in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    7. Lin, Mei-Chen & Lin, Yu-Ling, 2021. "Idiosyncratic skewness and cross-section of stock returns: Evidence from Taiwan," International Review of Financial Analysis, Elsevier, vol. 77(C).
    8. Berggrun, Luis & Cardona, Emilio & Lizarzaburu, Edmundo, 2019. "Extreme daily returns and the cross-section of expected returns: Evidence from Brazil," Journal of Business Research, Elsevier, vol. 102(C), pages 201-211.
    9. Jang, Jeewon & Kang, Jangkoo, 2019. "Probability of price crashes, rational speculative bubbles, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 222-247.
    10. Tong Suk Kim & Heewoo Park, 2018. "Is stock return predictability of option‐implied skewness affected by the market state?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1024-1042, September.
    11. Fan, Ruixin & Xiong, Xiong & Gao, Ya, 2021. "Can the probability of extreme returns be the basis for profitable portfolios? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 76(C).
    12. Gao, Ya & Bradrania, Reza, 2024. "Property crime and lottery-related anomalies," Global Finance Journal, Elsevier, vol. 59(C).
    13. Kwon, Kyung Yoon & Min, Byoung-Kyu & Sun, Chenfei, 2022. "Enhancing the profitability of lottery strategies," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 166-184.
    14. Nguyen, Hung T. & Truong, Cameron, 2018. "When are extreme daily returns not lottery? At earnings announcements!," Journal of Financial Markets, Elsevier, vol. 41(C), pages 92-116.
    15. Zhu, Zhaobo & Harrison, DavidM. & Seiler, MichaelJ., 2020. "Preference for lottery features in real estate investment trusts," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 599-613.
    16. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    17. Li An & Huijun Wang & Jian Wang & Jianfeng Yu, 2020. "Lottery-Related Anomalies: The Role of Reference-Dependent Preferences," Management Science, INFORMS, vol. 66(1), pages 473-501, January.
    18. Annaert, Jan & De Ceuster, Marc & Verstegen, Kurt, 2013. "Are extreme returns priced in the stock market? European evidence," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3401-3411.
    19. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    20. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.

    More about this item

    Keywords

    Behavioral finance; asset pricing; sentiment; emerging market;
    All these keywords.

    JEL classification:

    • G4 - Financial Economics - - Behavioral Finance
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:emffin:v:20:y:2021:i:2:p:192-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.ifmr.ac.in .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.