IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v98y2022ics0304406821001439.html
   My bibliography  Save this article

Strict pure strategy Nash equilibrium in large finite-player games when the action set is a manifold

Author

Listed:
  • Carmona, Guilherme
  • Podczeck, Konrad

Abstract

We present results on the relationship between non-atomic games (in distributional form) and approximating games with a large but finite number of players. Specifically, in a setting with differentiable payoff functions, we show that: (1) The set of all non-atomic games has an open dense subset such that any finite-player game that is sufficiently close (in terms of distributions of players’ characteristics) to a game in this subset and has sufficiently many players has a strict pure strategy Nash equilibrium (Theorem 1), and (2) any equilibrium distribution of any non-atomic game is the limit of equilibrium distributions defined from strict pure strategy Nash equilibria of finite-player games (Theorem 2). This supplements our paper Carmona and Podczeck (2020b), where analogous results are established for the case where the action set of players is a subset of some Euclidean space, with non-empty interior, and payoff functions are such that equilibrium actions are in the interior of the action set. The goal of the present paper is to remove these assumptions.

Suggested Citation

  • Carmona, Guilherme & Podczeck, Konrad, 2022. "Strict pure strategy Nash equilibrium in large finite-player games when the action set is a manifold," Journal of Mathematical Economics, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:mateco:v:98:y:2022:i:c:s0304406821001439
    DOI: 10.1016/j.jmateco.2021.102580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406821001439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2021.102580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Mas-Colell,Andreu, 1990. "The Theory of General Economic Equilibrium," Cambridge Books, Cambridge University Press, number 9780521388702, September.
    3. Rashid, Salim, 1983. "Equilibrium points of non-atomic games : Asymptotic results," Economics Letters, Elsevier, vol. 12(1), pages 7-10.
    4. Oliver D. Hart, 1979. "Monopolistic Competition in a Large Economy with Differentiated Commodities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 46(1), pages 1-30.
    5. Mas-Colell, Andreu, 1984. "On a theorem of Schmeidler," Journal of Mathematical Economics, Elsevier, vol. 13(3), pages 201-206, December.
    6. Steven C. Salop, 1979. "Monopolistic Competition with Outside Goods," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 141-156, Spring.
    7. John S. Chipman, 1970. "External Economies of Scale and Competitive Equilibrium," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(3), pages 347-385.
    8. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    9. Mas-Colell, Andreu, 1983. "Walrasian equilibria as limits of noncooperative equilibria. Part I: Mixed strategies," Journal of Economic Theory, Elsevier, vol. 30(1), pages 153-170, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    2. Wooders, M. & Selten, R. & Cartwright, E., 2001. "Some First Results for Noncooperative Pregames : Social Conformity and Equilibrium in Pure Strategies," The Warwick Economics Research Paper Series (TWERPS) 589, University of Warwick, Department of Economics.
    3. Guilherme Carmona, 2004. "On the existence of pure strategy nash equilibria in large games," Nova SBE Working Paper Series wp465, Universidade Nova de Lisboa, Nova School of Business and Economics.
    4. Yang, Jian & Qi, Xiangtong, 2013. "The nonatomic supermodular game," Games and Economic Behavior, Elsevier, vol. 82(C), pages 609-620.
    5. Yang, Jian, 2011. "Asymptotic interpretations for equilibria of nonatomic games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 491-499.
    6. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    7. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    8. Guilherme Carmona, 2003. "Nash and Limit Equilibria of Games with a Continuum of Players," Game Theory and Information 0311004, University Library of Munich, Germany.
    9. Wooders, Myrna & Edward Cartwright & Selten, Reinhard, 2002. "Social Conformity And Equilibrium In Pure Strategies In Games With Many Players," The Warwick Economics Research Paper Series (TWERPS) 636, University of Warwick, Department of Economics.
    10. Guilherme Carmona, 2009. "Intermediate Preferences and Behavioral Conformity in Large Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 11(1), pages 9-25, February.
    11. Kalai, Ehud & Shmaya, Eran, 2018. "Large strategic dynamic interactions," Journal of Economic Theory, Elsevier, vol. 178(C), pages 59-81.
    12. Al-Najjar, Nabil I., 2008. "Large games and the law of large numbers," Games and Economic Behavior, Elsevier, vol. 64(1), pages 1-34, September.
    13. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    14. Agnieszka Wiszniewska-Matyszkiel, 2016. "Belief distorted Nash equilibria: introduction of a new kind of equilibrium in dynamic games with distorted information," Annals of Operations Research, Springer, vol. 243(1), pages 147-177, August.
    15. Hannu Salonen, 2010. "On the existence of Nash equilibria in large games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 351-357, July.
    16. Wang, Yan & Yang, Jian & Qi, Lian, 2017. "A game-theoretic model for the role of reputation feedback systems in peer-to-peer commerce," International Journal of Production Economics, Elsevier, vol. 191(C), pages 178-193.
    17. Mitsunori Noguchi & William R Zame, 2004. "Equilibrium Distributions With Externalities," UCLA Economics Working Papers 837, UCLA Department of Economics.
    18. Jara-Moroni, Pedro, 2012. "Rationalizability in games with a continuum of players," Games and Economic Behavior, Elsevier, vol. 75(2), pages 668-684.
    19. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    20. Igal Milchtaich, 2000. "Generic Uniqueness of Equilibrium in Large Crowding Games," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 349-364, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:98:y:2022:i:c:s0304406821001439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.